Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 82))

Abstract

Whole-body specific absorption rate (SAR) values provide useful information about energy deposition resulting from exposure to radio frequency radiation (RFR). However, whole-body SAR values do not reveal possible localized “hot spots”. Although differences in regional temperatures have been measured in animals during RFR exposure [1–3], the use of temperature probes to make empirical measurements of these “hot spots” can be extremely time consuming and are invasive in nature [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lin, J.C., Guy, A.W., and Kraft, G.H. (1973) Microwave selective brain heating, J. Microwave Power 8 275–286.

    Google Scholar 

  2. Chou, C.K., Guy, A.W., McDougall, J.A., and Lai, H. (1985) Specific absorption rate in rats exposed to 2,450 MHz microwaves under seven exposure conditions, Bioelectromagnetics 6, 73–88.

    Article  Google Scholar 

  3. Ward, T.R., Svensgaard, D.J., Spiegel, R.J., Puckett, E.T., Long, M.D., and Kinn, J.B. (1986) Brain temperature measurements in rats: A comparison of microwave and ambient temperature exposures, Bioelectromagnetics 7, 243–258.

    Article  Google Scholar 

  4. Chou, C.K., Bassen, H., Osepchuk, J., Balzano, Q., Peterson, R., Meltz, M., Cleveland, R., Lin, J.C., and Heynick, L. (1996) Radiofrequency electromagnetic exposure: Tutorial review on experimental dosimetry, Bioelectromagnetics 17 195–208.

    Article  Google Scholar 

  5. Yee, K.S. (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media IEEE Trans. Ant. Prop. AP-14 302–307.

    ADS  MATH  Google Scholar 

  6. Luebbers, R., Hunsberger, F.P., Kunz, K.S., Standler, R.B., and Schneider, M. (1990) A frequency dependent finite-difference time-domain formulation for dispersive materials IEEE Trans. Electromagn. Campal., EMC-32 222–227.

    Article  Google Scholar 

  7. Kunz K.S. and Luebbers R.J. (1993) The Finite Difference Time Domain Method for Electromagnetics CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  8. Shapiro, W.R., Lutomirski, R.F., and Yura, H.T. (1971) Induced fields and heating within a cranial structure irradiated by an electromagnetic plane wave, IEEE Trans. Microwave Theory Tech. MTT 19 187–196.

    Article  ADS  Google Scholar 

  9. Kritikos, H.N. and Schwan, H.P. (1972) Hot spots generated in conducting spheres by electromagnetic waves and biological implications IEEE Trans. Biomed Eng. BME-19 53–58.

    Article  Google Scholar 

  10. Kritikos H.N. and Schwan, H.P. (1975) The distribution of heating potential inside lossy spheres IEEE Trans. Biomed Eng. BME-22 457–463.

    Article  Google Scholar 

  11. Ohlsson, T. and Risman, P.O. (1978) Temperature distribution of microwave heating - Spheres and cylinders, J. Microwave Power 13 303–310.

    Google Scholar 

  12. Rukspollmuang, S. and Chen, K-M. (1979) Heating of spherical versus realistic models of human and infrahuman heads by electromagnetic waves, Rad. Sci. 14 51–62.

    Article  ADS  Google Scholar 

  13. Hagmann, M.J., Gandhi, O.P., D’Andrea, J.A., and Chattedee, I. (1979) Head resonance: Numerical solutions and experimental results IEEE Trans. Microwave Theory Tech. MTT-27 809–813.

    Article  ADS  Google Scholar 

  14. Dawson, T.W., Cupata, K., and Stuchly, M.A. (1997) Influence of human model resolution on computed currents induced in organs by 60-Hz magnetic fields, Bioelectromagnetics 18 478–490, 1997.

    Article  Google Scholar 

  15. D’Andrea, J.A., Thomas, A., and Hatcher, D.J. (1994) Rhesus monkey behavior during exposure to high-peak-power 5.62-GHz microwave pulses, Bioelectromagnetics 15 163–176.

    Article  Google Scholar 

  16. Kritikos, H.N. and Schwan, H.P. (1979) Potential temperature rise induced by electromagnetic field in brain tissues, IEEE Trans. Biomed Eng BME-26 29–34.

    Article  Google Scholar 

  17. Spiegel, R.J., Fatmi, M.B.E., and Ward, T.R. (1987) A finite-difference electromagnetic deposition/thermoregulatory model: Comparison between theory and measurements, Bioelectromagnetics 8 259–273.

    Article  Google Scholar 

  18. Gabriel, C. (1996) Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, Air Force Material Command, AL/OE-TR-1996–0037 Brooks Air Force Base, TX.

    Google Scholar 

  19. Gabriel, C., Gabriel, S., and Courthout, E. (1996) The dielectric properties of biological tissues: 1. Literature survey, Phys. Med. Biol. 41 2231–2250.

    Article  Google Scholar 

  20. Gabriel, S., Lau, R.W., and Gabriel, C. (1996) The dielectric properties of biological tissues: 2. Measurement in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol. 41 2251–2269.

    Article  Google Scholar 

  21. Dumey, C.H., Massoudi, H., and Iskander, M.F. (1986) Radiofrequency Radiation Dosimetry Handbook USAFSAM-TR-85–73 Brooks Air Force Base, TX.

    Google Scholar 

  22. Mason, P.A., Walters, T.J., Fanton, J.W., Erwin, D.N., Gao, J.H., Roby, J.W., Kane, J.L., Lott, K.A., Lott, L.E. and Blystone, R.V. (1995) Database created from magnetic resonance images of a Sprague Dawley rat, rhesus monkey, and pigmy goat, FASEB J. 9 434–440.

    Google Scholar 

  23. Chou, C.K., Chen, G.W., Guy, A.W., and Luk, K.H. (1984) Formulas for preparing phantom muscle tissue at various radiofrequencies, Bioelectromagnetics 5 435–441.

    Article  Google Scholar 

  24. Barrett, C.P., Anderson, L.D., Holder, L.E., and Poliakoff, S.J. (1994) Primer of Sectional Anatomy with MRI and CT Correlation, Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  25. Mai, J.K., Assheuer, J., and Paxinos, G. (1997) Atlas of the Human Brain Academic Press, London, England.

    Google Scholar 

  26. Olds, R.J. and Olds, J.R. (1979) A Colour Atlas of the Rat - Dissection Guide Wolfe Medical Publications, Ltd., Ipswich, England.

    Google Scholar 

  27. Popesko, P., Rajtova, V., and Horak, J. (1992) A Color Atlas of Anatomy of Small Laboratory. Vol. 11: Rat, Mouse, and Hamster Wolfe Publishing Ltd., London, England.

    Google Scholar 

  28. Hopkins, Sr., C.E., Hamm, Jr., T.E., and Leppart, G.L. (1972) Atlas of Goat Anatomy. Part IL Serial Cross Sections. Edgewood Arsenal Report, 1972-EA-TR-4626 Edgewood Arsenal, MD.

    Google Scholar 

  29. Dalrymple, G.V. (1965) An Atlas of Cross-Sectional Anatomy of the Macaca Mulatta for use in Radiobiological Experiments. USAF-TR-65–32 Brooks Air Force Base, TX.

    Google Scholar 

  30. Lapin, G.D. and Allen, C. (1997) Requirements for accurate anatomical imaging of the rat for electromagnetic modeling. Proceedings of the 19 th International Conference, IEEE/EMBS, Chicago, IL, 2480–2483.

    Google Scholar 

  31. Blackman, C.F. and Black, J.A. (1977) Measurement of microwave radiation absorbed by biological systems. 2. Analysis by Dewar-flask calorimetry, Radio Sci. 12 9–14.

    Article  ADS  Google Scholar 

  32. Allen, S.J. and Hurt, W.D. (1979) Calorimetric measurements in microwave energy absorption by mice after simultaneous exposure in 18 animals, Radio Sci. 14 1–4.

    Article  ADS  Google Scholar 

  33. Chou, C.K., Guy, A.W., and Johnson, R.B. (1984) SAR. in rats exposed in 2450-MHz circularly polarized waveguide, Bioelectromagnetics 5 389–398.

    Article  Google Scholar 

  34. Sullivan, D., Gandhi, O., and Taflove, A. (1988) Use of the finite difference time-domain method in calculating EM absorption in man models, IEEE Trans. Biomed Eng. BME-35 179–185.

    Article  Google Scholar 

  35. Eycleshymer, A.C. and Schoemaker, D.M. (1911) A Cross-Section Anatomy, Appleton, New York.

    Google Scholar 

  36. Furse, C.M. and Gandhi, O.P. (1998) Calculation of electric fields and currents induced in a millimeter-resolution human model at 60 Hz using the FDTD method, Bioelectromagnetics 19 293–299.

    Article  Google Scholar 

  37. Zubal, I.G., Harrell, C.R., Smith, E.O., Rattner, Z., Gindi, G.R., and Hoffer, P.H. (1994) Computerized three dimensional segmented human anatomy, Med. Phys. Biol. 21 299–302.

    Google Scholar 

  38. Dimbylow, P.J. (1995) The development of realistic voxel phantoms for electromagnetic field dosimetry, in P.J. Dimbylow (ed.), Voxel Phantom Development, Proceedings of an International Workshop held at the National Radiological Protection Board,Chilton, UK, 1–7.

    Google Scholar 

  39. Netter, F.H. (1989) Atlas of Human Anatomy, CIBA-GEIGY Corp., Summit, New Jersey.

    Google Scholar 

  40. Spitzer, V.M. and Whitlock, D.G. (1998) Atlas of the Visible Human Male, Jones and Bartlett Publishers, Sudbury, MA.

    Google Scholar 

  41. Gandhi, O.P. and Furse, C.M. (1995) Millimeter-resolution MRI-based models of the human body for electromagnetic dosimetry from ELF to microwave frequencies. in P.J. Dimbylow (ed.) Voxel Phantom Development, Proceedings of an International Workshop held at the National Radiological Protection Board, Chilton, UK, 24–31.

    Google Scholar 

  42. Lau, R.W.M. and Sheppard, R.J. (1986) The modeling of biological systems in three dimensions using the time domain finite-difference method: I. The implementation of the model, Phys. Med. Biol. 31 1247–1256.

    Article  Google Scholar 

  43. Sullivan, D.M. (1992) A frequency-dependent FDTD method for biological applications, IEEE Trans. Microwave Theory Tech MTT-40 532–539.

    Article  ADS  Google Scholar 

  44. Pontalti, R., Cristoforetti, L., and Cescatti, L. (1983) The frequency dependent FDTD method for multi-frequency results in microwave hyperthermia treatment simulation, Phys. Med. Biol. 38 1283–1298.

    Article  Google Scholar 

  45. Penn, J. and Cohoon, D. (1978) Analysis of a Fortran Program for Computing Electric Field Distribution in Heterogeneous Penetrable Nonmagnetic Bodies of Arbitrary, Shape Through Application of Tensor Green’s Functions, USAFSAM-TR-78–40 Brooks Air Force Base, TX.

    Google Scholar 

  46. Gordon, R.G., Roemer, R.B., and Horvath, S.M. (1976) A mathematical model of the human temperature regulatory system - Transient cold exposure response, IEEE Trans. Biomed. Eng., BME23 434–444.

    Article  Google Scholar 

  47. Iskander, M.F. and Khoshdel-Milani, O. (1984) Numerical calculations of the temperature distribution in realistic cross sections of the human body, Int. J. Radiation Oncology Biol. Phys 10 1907–1912.

    Article  Google Scholar 

  48. Bowman, H.F., Cravalho, E.G., and Woods, M. (1975) Theory, measurement, and application of thermal properties of biomaterials, Ann. Rev. Biophys. Bioeng. 4 43–80.

    Article  Google Scholar 

  49. Chato, J.C. (1985) Selected thermophysical properties of biological materials, in A. Shitzer and R.C. Eberhart (eds.), Heat Transfer in Medicine and Biology 2 413–418.

    Google Scholar 

  50. Müller, M., Sachse, F., and Meyer-Waarden, K. (1996) Creation of finite element models of human body based upon tissue classified voxel representations, Proc. First Users Conf. Nat. Lib. Med. Visible Human Project, 1–5.

    Google Scholar 

  51. Walters, T.J., Mason, P.A., Ryan, K.L., Nelson, D.A., and Hurt, W.D. A comparison of SAR values determined empirically and by FD-TD modeling, in B.J. Klauenberg and D. Miklavčič, Eds., Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields, Kluwer Academic PublishersB.V., Dordrecht, The Netherlands, pp. 207–216.

    Google Scholar 

  52. Walters, T.J., Ryan, K.L., Belcher, J.C., Doyle, J.M., Tehrany, M.R., and Mason, P.A. (1998) Regional brain heating during microwave exposure (2.06-GHz), warm-water immersion, environmental heating, and exercise, Bioelectromagnetics, 19 341–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mason, P.A. et al. (2000). Recent Advancements in Dosimetry Measurements and Modeling. In: Klauenberg, B.J., Miklavčič, D. (eds) Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields. NATO Science Series, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4191-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4191-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6405-4

  • Online ISBN: 978-94-011-4191-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics