Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 82))

Abstract

It is generally true to say that the dielectric properties are intrinsic parameters that determine the effects of electric fields on matter. This leads to the statement that dielectric properties (relative permittivity ε’ and effective conductivity σ) play a dominant role in the overall consideration of interaction between electromagnetic fields and matter and in related applications in numerous disciplines including electromagnetic dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gabriel, S., Lau, R. W. and Gabriel, C. (1996) The dielectric properties of biological tissues: 3. Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol. 41, 2271–2293.

    Article  Google Scholar 

  2. Gabriel, C. (1996) Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, Final Technical Report, US Air Force, TR-1996–0037, http://www.brooks.af.mil/HSC/AL/OE/OER/Title/Title.html

    Google Scholar 

  3. Gabriel, C., Chan, T. Y. A., and Grant, E. H. (1994) Admittance models for open ended coaxial probes and their place in dielectric spectroscopy, Phys. Med. Biol. 39, 2183–2200.

    Article  Google Scholar 

  4. Jenkins, S., Hodgetts, T. E., Clarke, R. N., and Preece, A. W. (1990) Dielectric measurements on reference liquids using automatic network analysers and calculable geometries, Meas. Sci. Technol. 1, 691–702.

    Article  ADS  Google Scholar 

  5. Wei, Y-Z and Sridar, S. (1991) Radiation-corrected open-ended coaxial line technique for dielectric measurements of liquids up to 20 GHz, IEEE Trans. MIT 39, 526–531.

    Article  Google Scholar 

  6. Gabriel, C. (1997) Interaction of the body with the radio emissions from hand-held transceivers - IBREHT, Section 4, NRPB, Chilton, Oxon, UK.

    Google Scholar 

  7. Schawn, H.P. (1957) Electrical properties of tissues and cell suspensions. Adv. Biol. Med. Phys. 5, 147–209.

    Google Scholar 

  8. Surowiec, A., Stuchly, S. S., and Swamp, A. (1985) Radiofrequency dielectric properties of animal tissues as a function of time following death, Phys. Med. Biol. 30, 1131–1141.

    Article  Google Scholar 

  9. Fujimoto, E. and Kinouchi, Y. (1996) Tissue diagnosis through nonuniformity estimated by bioimpedance P-182B, BEMS, Eighteenth Annual Meeting, B.C. Canada.

    Google Scholar 

  10. Irimajiri, A., Ando, M., Matsuoka, T., Ichinowatari, T., and Takeuchi, S. (1996) Dielectric monitoring of rouleaux formation in human blood: A feasibility study, Biochem. Biophys. Acta. 1290, 207–209.

    Article  Google Scholar 

  11. Dawson, T. W. and Stuchly, M. A. (1998) Effects of skeletal muscle anisotropy on human organ dosimetry under 60 Hz uniform magnetic field exposure, Phys. Med. Biol. 43, 1059–1074.

    Article  Google Scholar 

  12. Ivanchenko, I.A., Andreyev, E.A., Lizogub, V.G., and Aveshnikova, L.V. (1994) Space-time distribution of normal and pathological human skin dielectric properties in the millimeter wave range, Electro-and Magnetobiol. 13, 15–25.

    Google Scholar 

  13. Saha, S. and Williams, P.A. (1992) Electrical and dielectric properties of wet human coetical bone as a function of frequency, IEEE Trans. Biomed. Eng. 39, 1298–1304.

    Article  Google Scholar 

  14. Nicholson, P.W. (1965) Specific impedance of cerebral white matter, Experimental Neurology 13, 386–401.

    Article  Google Scholar 

  15. Ranck, J.B. and BeMent, S.L. (1965) The specific impedance of the dorsal columns of cat: An anisotropic medium, Experimental Neurology, 11, 451–463.

    Article  Google Scholar 

  16. Gabriel, C. (1997) Comments on ‘Dielectric properties of skin’, Phys. Med. Biol. 42, 1671–1674.

    Article  MathSciNet  Google Scholar 

  17. NRPB (1993) Board Statement on Restrictions on Human Exposure to Static and Time Varying Electromagnetic Fields and Radiation., NRPB, Chilton, Oxon, UK.

    Google Scholar 

  18. CENELEC (1995) Human exposure to electromagnetic fields, ENV50166–1 and ENV 50166–2, CENELEC, Brussels.

    Google Scholar 

  19. ICNIRP Guidelines (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields, Health Physics 74,494–522.

    Google Scholar 

  20. DiChilton, J.P. (1996) The development of realistic voxel phantoms for electromagnetic field dosimetry. Proc. of an International Workshop on Voxel Phantom Development, NRPB Report, NRPB, Chilton, Oxon, UK.

    Google Scholar 

  21. Pethig, R. (1996) Dielectrophoresis: Using inhomogeneous AC electric fields to separate and manipulate cells, Critical Reviews in Biotechnology 16, 331–348.

    Article  Google Scholar 

  22. Woodward, A.M. and Kell, D.B. (1990) On the nonlinear dielectric properties of biological systems, Bioelectrochem. and Bioenergetics 24, 83–100.

    Article  Google Scholar 

  23. Weaver, J.C. and Astumian, R.D. (1990) The response of living cells to very weak electric fields: The thermal noise, Science 247, 459–462.

    Article  ADS  Google Scholar 

  24. Moussavi, M., Schwan, H.P., and Sun, H.H. (1994) Med. &Biol. Eng. & Comput 32, 121–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gabriel, C. (2000). The Dielectric Properties of Tissues. In: Klauenberg, B.J., Miklavčič, D. (eds) Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields. NATO Science Series, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4191-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4191-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6405-4

  • Online ISBN: 978-94-011-4191-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics