Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 552))

  • 177 Accesses

Abstract

The past decade has seen a paradigm shift from the study of solids as a collection of weakly interacting elementary excitations to a materials-driven exploration of systems in chemistry physics and biology that display unexpected emergent behavior because they contain collections of agents (electrons atoms molecules) that couple nonlinearly with each other in an enviroment which both influences agent behavior and is influenced by it. Experimental and theoretical investigations of the high Tc cuprate superconductors and related members of the strongly correlated branch of the hard matter family (heavy electron systems organic superconductors manganites) have raised profound questions in physics. Because these questions have deep intellectual and practical connections with the behavior of soft matter and biological matter the exploration of these connections can open new directions for further progress.

To make explicit the study of these potential connections we have introduced the term, complex adaptive matter. Complex adaptive matter thus denotes materials that display intrinsic nonlinear behavior and typically must choose between competing ground states. Such materials change their properties dramatically (adapt) in response to small changes in external parameters such as temperature, pressure, doping level, applied fields. For strongly correlated electron systems, such as the cuprate superconductors, intrinsic nonlinear behavior arises because the dominant interaction between quasiparticles (here largely confined to a plane) is electronic; that interaction is both determined by the quasiparticles and determines their behavior. As a result nonlinear feedback plays a crucial role in determining systems behavior. here that feedback is negative, it keeps the system close to a man field behavior; where it becomes positive, as in the case of magnetically underdoped cuprate superconductors, it leads to nascent spin density waves, dramatic changes in quasiparticle behavior, quantum critical behavior, and three distinct normal state phases before the system undergoes a superconducting transition.

In this lecture, we will present a complex adaptive matter perspective on the cuprate superconductors and organic superconductors with an emphasis on the organizing principles at work in these systems, principles that may play a role in other members of the complex adaptive matter family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bardeen, L. N. Cooper and J. R. Schrieffer Phys. Rev. 108 1175 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. P. A. Lee, T. M. Rice and P. W. Anderson Phys. Rev. Lett. 31 462 (1973).

    Article  ADS  Google Scholar 

  3. K. G. Wilson Rev. Mod. Physics 47 773 (1975).

    Article  ADS  Google Scholar 

  4. D. Pines Z. Phys. B103 129 (1997); Proc. of the NATO ASI on The Gap Sym­metry and Fluctuations in High Tc Superconductors J. Bok and G. Deutscher eds. Plenum Pub. (1998).

    Google Scholar 

  5. H. Y. Hwang et al Phys. Rev. Lett. 72 2636 (1994).

    Article  ADS  Google Scholar 

  6. C. P. Slichter in Strongly Correlated Electron Systems ed. K. S. Bedell et al. (Addison-Wesley Reading MA1994).

    Google Scholar 

  7. V. Barzykin and D. Pines Phys. Rev. B 52 13585 (1995).

    Article  ADS  Google Scholar 

  8. H. Alloul, P. Mendels, G. Collin and Ph. Monod Physica C 156 355 (1988).

    ADS  Google Scholar 

  9. N. J. Curro, T. Imai, C. P. Slichter and B. Dabrowski Phys. Rev. B 56 877 (1997).

    Article  ADS  Google Scholar 

  10. G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda Science 278 1432 (1997).

    Article  ADS  Google Scholar 

  11. J. Schmalian, D Pines and B. Stojkovic Phys. Rev. Lett. 80 3839 (1998).

    Article  ADS  Google Scholar 

  12. A. G. Loeser et al. Science 273 325 (1996).

    Article  ADS  Google Scholar 

  13. H. Ding et al. Nature 382 51 (1996).

    Article  ADS  Google Scholar 

  14. C. Renner O. Fischer to appear in Phys. Rev. Letters.

    Google Scholar 

  15. A. V. Puchkov D. N. Basov and T. Timusk J. Phys. Condens. Matter 8 10049 (1996) and references therein.

    Google Scholar 

  16. G. Blumberg, M. Kang, M. V. Klein, K. Kadowaki, C. Kendziora Science 278 1374 (1997).

    Article  Google Scholar 

  17. R. Nemetschek M. Opel C. Hoffmann P. Müller R. Hackl H. Berger L. Forro A. Erb E. Walker Phys. Rev. Lett. 78 4837 (1997).

    Article  ADS  Google Scholar 

  18. B. Bucher et al. Phys. Rev. Lett. 70 2012 (1993).

    Article  ADS  Google Scholar 

  19. P. Monthoux and D. Pines Phys. Rev. B 47 6069 (1993); ibid 48 4261 (1994).

    Google Scholar 

  20. P. Monthoux, A. Balatsky and D. Pines Phys., Rev. Lett. 67 3448 (1993); Phys. Rev. B 46 14803 (1992).

    Google Scholar 

  21. D. Pines P. Monthoux J. Phys. Chem. Solids 56 1651 (1995).

    Article  ADS  Google Scholar 

  22. A. Millis H. Monien and D. Pines Phys. Rev. B 42 1671 (1990).

    Google Scholar 

  23. Y. Zha V. Barzykin and D. Pines Rev. B 54 2561 (1996).

    Article  Google Scholar 

  24. R. Hlubina and T.M. Rice Phys. Rev. B 51 9253 (1995); ibid 52 13043 (1995).

    ADS  Google Scholar 

  25. B. P. Stojkovie and D. Pines Phys., Rev. Lett. 76 811 (1996); Phys. Rev. B 55 8576 (1997).

    Google Scholar 

  26. Pengcheng Dai H. A. Mook and F. Dogan Phys. Rev. Lett. 80 1738 (1998).

    Article  ADS  Google Scholar 

  27. F. C. Zhang and T. M. Rice Phys. Rev. B 37 3759 (1988).

    Article  ADS  Google Scholar 

  28. J. Schmalian D. Pines and B. Stojkovic to appear in Phys Rev. B.

    Google Scholar 

  29. A. Chubukov, D. Morr and K. A. Shakhnovich Phil. Mag. B 74 563 (1994).

    Article  Google Scholar 

  30. M. V. Sadovskii Sov. Phys. JETP 50 989 (1979); J. Moscow Phys. Soc. 1 391 (1991). see also R. H. McKenzie and D. Scarratt Phys Rev. B 54 R12709 (1996).

    Google Scholar 

  31. D. S. Marshall et al. Phys. Rev. Lett. 76 4841 (1996).

    Article  ADS  Google Scholar 

  32. J. A. Hertz Phys. Rev. B 14 1165 (1976).

    Article  ADS  Google Scholar 

  33. A. J.Millis Phys. Rev. B 48 7183 (1993).

    Article  ADS  Google Scholar 

  34. A.P. Kampf and J.R. Schrieffer Phys. Rev. B 42 7967 (1990); E. Dagotto A. Nazarenko and A. Moreo Phys. Rev. Lett 74 310 (1995); M. Langer J. Schmalian S Grabowski and K. H. Bennemann Phys. Rev. Lett. 75 4508 (1995); A.V. Chubukov and D.K. Morr Phys. Rep. 288 355 (1997); R. Preuss W. Hanke C. Gröber and H. G. Evertz Phys. Rev. Lett. 79 1122 (1997).

    Google Scholar 

  35. J. R. Schrieffer J. Low Temp. Phys. 99 397 (1995).

    Article  ADS  Google Scholar 

  36. Y. M Vilk and A. M. S. Tremblay J. Phys. I (France) 7 1309 (1997).

    Article  Google Scholar 

  37. S. Chakravarty B. I. Halperin and D. R. Nelson Phys. Rev. Lett. 60 1057 (1988); ibid. Pys. Rev. B 39 2344 (1988).

    Google Scholar 

  38. A. V. Chubukov and S. Sachdev Phys. Rev. Lett. 71 (1993); A. V. Chubukov S. Sachdev and J. Ye Phys. Rev. B 49 11919 (1994).

    Google Scholar 

  39. S. Sachdev, A. V. Chubukov and A. Sokol Phys. Rev. B 51 14874 (1995)

    Article  ADS  Google Scholar 

  40. S. Ohsugi et al. J. Phys. Soc. Jpn. 63 700 (1994).

    Article  ADS  Google Scholar 

  41. P. Monthoux and D. Pines Phys. Rev. Lett. 69 961 (1992); Phys. Rev. B 49 4261 (1992).

    Google Scholar 

  42. Q. Si et al Phys. Rev. B (1993).

    Google Scholar 

  43. V. J. Emery and S. A. Kivelson, Physica C 209 597 (1993).

    Article  ADS  Google Scholar 

  44. H. J. Schulz J.Phys. France 50 2833 (1989); J. Zaanen and J. Gunnarsson Phys. Rev. B40 7391 (1989); A. R. Bishop et al. Europhysics Letters 14 157 (1991).

    Google Scholar 

  45. S. R. White and D. J. Scalapino cond-mat/9801274.

    Google Scholar 

  46. J. Lekner Physica (Amsterdam) 176A 485 (1991).

    ADS  Google Scholar 

  47. N. Gronbech-Jensen et al. Molec. Phys. 92 941 (1997).

    ADS  Google Scholar 

  48. J. C. Slater Phys. Rev. 82 538 (1951).

    Article  ADS  Google Scholar 

  49. J. R. Schrieffer X. G. Wen and S. C. Zhang Phys. Rev. B 39 11663 (1989).

    Article  ADS  Google Scholar 

  50. B. I. Shraiman and E. D. Siggia Phys. Rev. B 40 9162 (1989).

    Article  ADS  Google Scholar 

  51. T. Dombre J. Phys. France 51 847 (1990).

    Article  Google Scholar 

  52. N. D. Mermin and H. Wagner Phys. Rev. Lett. 17 1133 (1966).

    Article  ADS  Google Scholar 

  53. S. Chakravarty et al. Phys. Rev. Lett. 60 1057 (1988).

    Article  ADS  Google Scholar 

  54. D. M. Frenkel and W. Hanke Phys. Rev. B 42 6711 (1990).

    Article  ADS  Google Scholar 

  55. J. Bona and J. E. Gubernatis Phys. Rev. E 53 6504 (1996).

    Article  ADS  Google Scholar 

  56. E. P. Wigner Phys. Rev. 46 1002 (1934).

    Article  ADS  Google Scholar 

  57. J. M. Tranquada et al. Phys. Rev. Lett. 70 445 (1993).

    Article  ADS  Google Scholar 

  58. This is a highly degenerate configuration which can be mapped into a classical six vertex model [59]. See for instance R. J. Baxter in Exactly Solved Models in Statistical Mechanics (Academic Press London 1982) pg. 127.

    Google Scholar 

  59. B. P. Stojkovic et al to appear in Phys. Rev. Letters.

    Google Scholar 

  60. G. Aeppli et al. Science 278 1432 (1997).

    Article  ADS  Google Scholar 

  61. J. Bardeen, Phys. Rev. Lett. 45 1978 (1980)

    Google Scholar 

  62. D. S. Fisher, Phys. Rev. B 31 1396 (1985)

    Article  ADS  Google Scholar 

  63. B. P. Stojkovic and Niels Gr0nbech-Jensen in preparation.

    Google Scholar 

  64. M. Lang Superconductivity Review 21 (1996).

    Google Scholar 

  65. J. Caulfield et al. J. Phys.: Cond. Mat. 6 2911 (1994).

    Article  ADS  Google Scholar 

  66. C. H. Mielke et al. Phys. Rev. B 38 R4309 (1997).

    Article  ADS  Google Scholar 

  67. S. M. De Soto C. P. Slichter A. M. Kini H. H. Wang U. Geiser and J. M. Williams Phys. Rev. B 52 10364 (1995).

    Google Scholar 

  68. H. Mayaffre et al. Phys. Rev. Lett. 75 4122 (1995).

    Article  ADS  Google Scholar 

  69. K. Kanoda et al. Phys. Rev. B 54 76 (1996).

    Article  ADS  Google Scholar 

  70. Y. Nakazawa and K. Kanoda Phys. Rev. B 55 R8670 (1997).

    Article  ADS  Google Scholar 

  71. S. Belin K. Behnia and A. Deluzet preprint cond-mat/9805354.

    Google Scholar 

  72. L. N. Bulaevskii Adv. Phys. 37 443 (1988).

    Article  ADS  Google Scholar 

  73. H. Kino and H. Fukuyama J. Phys. Soc. Jpn. 65 2158 (1996).

    Article  ADS  Google Scholar 

  74. K. Kanoda Physica C 282 299 (1997).

    Article  ADS  Google Scholar 

  75. R. H. McKenzie Science 278 820 (1997); preprint cond-mat/9802198.

    Google Scholar 

  76. D.J. Van Harlingen, Rev. Mod. Phys. 67 515 (1995).

    Article  ADS  Google Scholar 

  77. D. J. Scalapino Phys. Rep. 250 329 (1995).

    Article  ADS  Google Scholar 

  78. K. Oshima T. Mori H. Inokuchi H. Urayama H. Yamochi and G. Saito Phys. Rev. B 38 938 (1988).

    Article  ADS  Google Scholar 

  79. M. Tamura et al. J. Phys. Soc. Jpn. 60 3861 (1991).

    Article  ADS  Google Scholar 

  80. V. Ivanov et al. Physica C 275 26 (1997).

    Article  ADS  Google Scholar 

  81. J. Schmalian Phys. Rev. Lett. 81 4232 (1998).

    Article  ADS  Google Scholar 

  82. C.H. Pao and N.E. Bickers Phys. Rev. Lett. 72 1870 (1994).

    Article  ADS  Google Scholar 

  83. P. Monthoux and D.J. Scalapino Phys. Rev. Lett. 72 1874 (1994).

    Article  ADS  Google Scholar 

  84. S. Grabowski M. Langer J. Schmalian and K.H. Bennemann Europhys. Lett. 34 219 (1996).

    Google Scholar 

  85. J. Singleton et al. unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmalian, J., Pines, D., Stojkovic, B. (2000). Materials-Driven Science: From High Tc to Complex Adaptive Matter. In: Skjeltorp, A.T., Edwards, S.F. (eds) Soft Condensed Matter: Configurations, Dynamics and Functionality. NATO Science Series, vol 552. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4189-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4189-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6403-0

  • Online ISBN: 978-94-011-4189-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics