Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 552))

Abstract

Recent experimental and theoretical research into the complexity of physical phenomena in clays is reviewed, and illustrated through the rich behavior displayed in physical model system clean chemistry customized synthetic clays, such as synthetic hectorites. Relations to naturally occuring clays and relevance to industrial applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Hummel, “Understanding Materials Science”, Springer-Verlag NY (1998)

    Google Scholar 

  2. B. Velde, “Introduction to Clay Minerals”, Chapman and Hall, London (1992)

    Book  Google Scholar 

  3. F.M van der Kooj and H.N.W. Lekkerkerker, “Formation of Nematic Liquid Crystals in Suspensions of Hard Colloid Platelets”, J. Phys. Chem. 102, 7829–7832 (1998)

    Article  Google Scholar 

  4. S.A. Solin, “CLAYS AND CLAY INTERCALATION COMPOUNDS: Properties and Physical Phenomena”, Annu. Rev. Mater. Sci. 27, 89–115 (1997)

    Article  ADS  Google Scholar 

  5. C. Oriakhi, “Nanosandwhiches” in Chemistry in Britain, p 59–62, Nov (1998)

    Google Scholar 

  6. “Complex Systems and Materials” at http://www.phys.ntnu.no/CPX (1999)

  7. J.O. Fossum, “Physical Phenomena in Clays”, Physica A 270, 270–277 (1999)

    Article  Google Scholar 

  8. Laporte Absorbents,UK; Laporte Technical Reports: P.K. Jennes Author

    Google Scholar 

  9. H. van Olphen, “Clay Colloid Chemistry”, Krieger Puplishing Company Florida, 2nd ed.(1991)

    Google Scholar 

  10. A. Mourchid, E. Lecolier and H. van Damme, P. Levitz, “On Viscoelastic, Birefringent, and Swelling Properties of Laponite Clay Suspensions: Revisited Phase Diagram”, Langmuir 14, 4718–4723 (1998)

    Article  Google Scholar 

  11. J. Israelachvili, “Intermolecular and Surface Forces”, Academic Press London (1992)

    Google Scholar 

  12. J.O. Fossum, A. Mikkelsen, A. Bakk, Unpublished (1999)

    Google Scholar 

  13. M. Reiner, “Deformation, Strain and Flow”, H.K. Lewis CO. LTD. London (1969)

    Google Scholar 

  14. M. Kroon, G.H. Wegdam and R. Sprik, “Dynamic light scattering studies on the sol-gel transition of a suspension of anisotropic colloidal particles”, Phys. Rev. E 54, 6541–6550 (1996)

    Article  ADS  Google Scholar 

  15. M. Kroon, W.L. Vos and G.H. Wegdam, “Structure and formation of a gel of colloidal disks”, Phys. Rev. E 57, 1962–1969 (1998)

    Article  ADS  Google Scholar 

  16. S. Cocard, J.F. Tassin and T. Nicolai, “Aggregation and Gelation of Colloidal Discs”, Unpublished poster at NATO ASI on Soft and Fragile Matter, St. Andrews, Scotland, July (1999)

    Google Scholar 

  17. D. Bonn, H. Tanaka, G. Wegdam, H. Kellay and J. Meunier, “Aging of a colloidal ”Wigner“ glass” Europhys. Lett., 45, 52–57 (1999)

    Article  ADS  Google Scholar 

  18. F. Pignon, A. Magnin, J-M. Piau, B. Cabane, P. Lindner and O. Diat, “Yield stress thixotropic clay suspension: Investigations of structure by light, neutron and x-ray scattering”, Phys. Rev. E 56, 3281–3289 (1997)

    Article  ADS  Google Scholar 

  19. T. Nicolai, Private Communication (1999)

    Google Scholar 

  20. L. Rosta and H.R. von Gunten, “Light Scattering Characterization of Laponite Sols”, J. Colloid and Interface Science 134, 397–406 (1989)

    Article  Google Scholar 

  21. A. Mourchid and P. Levitz, “Long-term gelation of laponite aqueuos dispersions”, Phys. Rev. E 57, R4887–R4890 (1998)

    Article  ADS  Google Scholar 

  22. J.P. Gabriel, C. Sanchez and P. Davidson, “Observation of Nematic Liquid-Crystal Textures in Aqueous Gels of Smectite Clays”, J. Phys. Chem. 100, 11139–11143 (1996)

    Article  Google Scholar 

  23. L. Onsager, Ann. N.Y. Acad. Sci. 51,627 (1949)

    Article  ADS  Google Scholar 

  24. M.J. Dijkstra, J-P. Hansen and P.A. Madden, “Gelation of a Clay Colloid Suspension”, Phys. Rev. Lett. 75,2236 (1995)

    Article  ADS  Google Scholar 

  25. M.J. Dijkstra, J-P. Hansen and P.A. Madden, “Statistical model for the structure snd gelation of smectite clay suspensions”, Phys. Rev. E 55, 3044–3053(1997)

    Article  ADS  Google Scholar 

  26. E. Trizac, “Quelques aspects statisiques de systemes complexes: coalescence balistique et suspensions d’argile”, These l’Ecole normale superieure de Lyon (1997)

    Google Scholar 

  27. E. Trizac, Private Communication (1999)

    Google Scholar 

  28. E. Trizac and J-P. Hansen, “The Wigner-Seitz model for concentrated clay suspensions”, J.Phys.: Condens. Matter 9, 2683–2692 (1997)

    Article  ADS  Google Scholar 

  29. E. Trizac and J-P. Hansen, “Wigner-Seitz model of charged lamellar colloidal dispersions”, Phys. Rev. E56, 3137–3149 (1997)

    Google Scholar 

  30. R.J.F. Leote de Carvalho, E. Trizac and J-P. Hansen, “Non-linear Poisson-Boltzmann theory for swollen clays”, Europhys. Lett 43, 369–375 (1998)

    Article  ADS  Google Scholar 

  31. P.D. Kaviratna, T.J. Pinnavaia and P.A. Schroeder, “DIELECTRIC PROPERTIES OF SMECTITE CLAYS”, J. Phys. Chem. Sol. 57, 1897–1906 (1996)

    Article  ADS  Google Scholar 

  32. M.A. Bates and D. Frenkel, “Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets”, J. Chem. Phys, 110, 6553–6559 (1999)

    Article  ADS  Google Scholar 

  33. Y. Abdelhaye, G. Daccord, F. Duval, A. Louge and H. van Damme, “The hydraulic fracturation of colloidal gels”, C.R. Acad. Sci. Paris t. 325, Serie IIb (1997)

    Google Scholar 

  34. F. Pignon, A. Magnin and J-M. Piau, “Structure and Pertinent Length Scale of a Discotic Clay Gel”, Phys. Rev. Lett. 76, 4857–4860 (1996)

    Article  ADS  Google Scholar 

  35. F. Pignon, A. Magnin and J-M. Piau, “Butterfly Light Scattering Pattern and Rheology of a Sheared Thixotropic Clay Gel”, Phys. Rev. Lett. 79, 4689–4692 (1997)

    Article  ADS  Google Scholar 

  36. J.O. Fossum, E.DiMasi, S.Berg-Lutnaes, et.al, Unpublished work in progress (1999)

    Google Scholar 

  37. S. Karaborni, B. Smit, W. Heidug, J. Urai and E. van Oort, “The Swelling of Clays: Molecular Simulations of the Hydration of Montmorillonite”, Science 271, 1102–1104 (1996)

    Article  ADS  Google Scholar 

  38. J.T. Klopprogge, “Synthetics of Smectites and Porous Pillared Clay Catalysts: A Review” J. Porous Materials 5, 5–41 (1998)

    Article  Google Scholar 

  39. B.Y. Chen, H. Kim, S.D. Mahanti and T.J. Pinnavaia, Z.X. Cai, “Percolation and diffusion in two-dimensional microporous media: Pillared clays”, J. Chem. Phys. 100, 3872–3880 (1994)

    Article  ADS  Google Scholar 

  40. P. Zhou, J. Amarasekera, S.A. Solin, S.D. Mahanti and T.J. Pinnavaia, “Magnetic properties of vermiculite intercalation compounds”, Phys. Rev. B 47,16486–16493 (1993)

    Article  ADS  Google Scholar 

  41. H. van Damme, “Scale invariance and hydric behavior of soils and clays”, C.R. Acad. Sci. Paris t. 320 serie IIa, 665–681 (1995)

    Google Scholar 

  42. M. Sahimi, “Flow and Transport in Porous Media and Fractured Rock”, VCH Weinheim (1995)

    Google Scholar 

  43. M. Zabat, M. Vayer-Besancon, R. Harba, S. Bonnamy and H. van Damme, “Surface topography and mechanical properties of smectite films”, Prog. Colloid Polym. Sci. 105, 96–102 (1997)

    Article  Google Scholar 

  44. I. Grillo, P. Levitz and Th. Zemb, “SANS structural determination of a nonionic surfactant layer adsorbed on clay particles” Eur. Phys. J. B 10, 29–34 (1999)

    ADS  Google Scholar 

  45. M. Kawasumi, N. Hasegawa, A. Usuki and A. Okada,“Nematic liquid crystal/clay mineral composits” Mat. Science and Engineering C6, 135–143 (1998)

    Article  Google Scholar 

  46. J.O. Fossum et.al, Work in progress (1999)

    Google Scholar 

  47. F.P. Duval, P. Porion and H. Van Damme, “Microscale and Macroscale Diffusion of Water in Colloidal Gels. A Pulsed Field Gradient and NMR Imaging Investigation”, J. Phys. Chem. B 103, 5730–5735 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fossum, JO. (2000). Complex Physical Phenomena in Clays. In: Skjeltorp, A.T., Edwards, S.F. (eds) Soft Condensed Matter: Configurations, Dynamics and Functionality. NATO Science Series, vol 552. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4189-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4189-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6403-0

  • Online ISBN: 978-94-011-4189-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics