Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 552))

  • 192 Accesses

Abstract

We study a variety of granular flows and some models by means of a combination of simulations, experiments and analytic considerations. The models as well as the physical systems are governed by the presence of an interstitial gas. Through experimental comparison and validation of the models their applicability is determined. In particular we study bubbles of air in tubes (by experiment and simulation) the formation of stagnant zones in grain flow from a hopper (by experiment and simulation), fluidized beds (by simulation) and the intermittent flow in an hourglass (by experiment and simulation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. T. Jenkins and S. B. Savage. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech., Vol. 130, pp. 187, 1983.

    Article  ADS  MATH  Google Scholar 

  • I. Goldhirsch and G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., Vol. 70, pp. 1619, 1993.

    Article  ADS  Google Scholar 

  • G. Pengand H. J. Herrmann. Density waves of granular flow using lattice gas automata. Phys. Rev. E, Vol. 47, pp. 1796, 1994.

    ADS  Google Scholar 

  • S. Mc Namara, E. G. FlekkOy, and K. J. Máloy. Grains and gas flow. Molecular dynamics with hydrodynamic interactions. preprint, 1999.

    Google Scholar 

  • E. G. Flekkoy and K. J. Mley .A continuum description of dry granular flows: Experiment and simulation.Phys. Rev. E,Vol. 57, pp. 6962, 1998.

    Article  ADS  Google Scholar 

  • X.I. Wu, K. J. Måløy, A. Hansen, M. Ammi, and D. Bideau.Why hourglasses tick. Phys. Rev. Lett., Vol. 71, pp. 1363, 1993.

    Article  ADS  Google Scholar 

  • T. Le Pennec, K. J. Má10y, A. Hansen, M. Ammi, D. Bideau, and X 1. Wu. Ticking hour glasses: Experimental analysis of intermittent flow. Phys. Rev. E, Vol. 53, pp. 2257–2264, 1996.

    Article  ADS  Google Scholar 

  • C. T. Veje and P. Dimon. Power spectra of flow in an hourglass. Phys. Rev. E, Vol. 56, pp. 4376, 1997.

    Article  ADS  Google Scholar 

  • H. Hayakawa, S. Yue, and D. C. Hong. Hydrodynamic description of granular convection. Phys. Rev. Lett., Vol. 75, pp. 2328, 1995.

    Article  ADS  Google Scholar 

  • M-L. Tan, Y. H. Qian, I. Goldhirsch, and S. A. Orzaag. Lattice bgk approach to simulating granular flows. J. Stat. Phys., Vol. 81, 1995.

    Google Scholar 

  • E. Manger, T. Solberg, and B. H. Hjertager. Numerical simulation of the ticking hourglass. preprint, 1994.

    Google Scholar 

  • W. A. Beverloo, H. A. Leniger, and J. van de Velde. The flow of granular solids through orifices. Chem. Eng. Science, Vol. 15, pp. 260, 1961.

    Article  Google Scholar 

  • J. F. Davidson. Bubbles in fluidized beds. In E. Guazzelli and L. Oger, editors, Mobile Particulate Systems, page 197, New York, 1995. Kluwer Academic Publisher.

    Google Scholar 

  • J. F. Davidson and D. Harrison. Fluidization. Academic Press, New York, 1971.

    Google Scholar 

  • D. Gidaspau. Multiphase flow and fluidization. Academic Press, San Diego California, 1994.

    Google Scholar 

  • G. W. Baxter and R. P. Behringer. Pattern formation in flowing sand. Phys. Rev Lett., Vol. 62, pp. 2825, 1989.

    Article  ADS  Google Scholar 

  • D. Frenkel M. A. van der Hoef and A. J. C. Ladd. Self-diffusion in colloidal particles in a two-dimensional suspension: Are deviations from Fick’s law experimentally observable? Phys. Rev Lett., Vol. 67, pp. 3459, 1991.

    Article  ADS  Google Scholar 

  • A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. J. Fluid Mech., Vol. 271, pp. 285–309, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized boltzmaim equation. part 2. J. Fluid Mech., Vol. 271, pp. 309–339, 1994.

    ADS  Google Scholar 

  • W. Kalthoff, S. Schwarzer, and H. J. Herrmann. Simulations of particle suspensions with inertial effects. Phys. Rev. E, Vol. 56, pp. 2234, 1997.

    Article  ADS  Google Scholar 

  • O. Reynolds. On the dilatancy of media composed of rigid particles in contact. Phil. Mag., Vol. 20, pp. 469–482, 1885.

    Article  Google Scholar 

  • K. S. Lim, J. X. Zhu, and J. R. Grace. Hydrodynamics of gas-solid fluidization. Int. J. Multiphase Flow, Vol. 21, pp. 141–193, 1995.

    Article  MATH  Google Scholar 

  • G. D. Scott Packing of equal spheres. Nature, Vol. 188, pp. 908–909, 1960.

    Article  ADS  Google Scholar 

  • P. Carman. Fluid flow through granular beds. Trans. Inst. Chem. Eng. Lond., Vol. 15, pp. 150–160, 1937.

    Google Scholar 

  • L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Pergamon Press, New York, 1959. G. M. Homsy. Aspects of flow and mixing in fluidized beds. In Disorder and Mixing, pages 185–201, Dordrecht, 1988. Kluwer academic publisher.

    Google Scholar 

  • A. Zick and G. Homsy. Stokes flow through periodic arrays of spheres. J. Fluid Mech., Vol. 115, pp. 13–26, 1982.

    Article  ADS  MATH  Google Scholar 

  • E. G. Flekkpy. Lattice bgk models for miscible fluids. Phys. Rev. E, Vol. 47, pp. 4247, 1993.

    Article  ADS  Google Scholar 

  • G. McNamara and G. Zanetti. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett., Vol. 61, pp. 2332, 1988.

    Article  ADS  Google Scholar 

  • U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet. Lattice gas hydrodynamics in two and three dimensions. Complex Systems, Vol. 1, pp. 648, 1987.

    Google Scholar 

  • T. Le Pennec, K. J. Máloy, E. G. Flekkoy, J. C. Messager, and M. Ammi. Silo hiccups. dynamic effects of dilatancy in granular flows. Phys. of Fluids, Vol. 10, pp. 3072, 1998.

    Article  ADS  MATH  Google Scholar 

  • R. M. Davies and G. I. Taylor. Bubbles in fluidized bed. Proc. Roy. Soc., Vol. A200, pp. 375, 1950.

    ADS  Google Scholar 

  • T. Raafat, H. J. Herrmann, and J. P. Hulin. The pneumatic instability of granular materials. preprint, 1995.

    Google Scholar 

  • J. J. Alonso and H. J. Herrmann. Shape of the tail of a two-dimensional sandpile. Phys. Rev. Lett., Vol. 76, pp. 4911–4915, 1996.

    Article  ADS  Google Scholar 

  • T. Kawaguchi, T. Tanaka, and Y. Tsuji. Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparision between two-and three dimensional models). Powder technology, Vol. 96, pp. 129–138, 1998.

    Article  Google Scholar 

  • S. Luding and S. McNamara. Tcmodel. cond-mat/9810009, Vol. 1, pp. 111, 1998.

    Google Scholar 

  • L. Brendel and S. Dippel. Physics of dry granular media. In H. J. Herrmann, J.-P. Hovi,and S. Luding, editors, Physics of Dry Granular Media, page 313, Dordrecht, 1998.Kluwer Academic Publishers.

    Google Scholar 

  • F. Radjai and D. Wolf. Contact dynamics. Granular Matter, Vol. 1, pp. 3, 1998. S. Foerster, M. Louge, H. Chang, and K. Allia. Measurements of the collision properties of small spheres. Phys. Fluids, Vol. 6, pp. 1108, 1994.

    Google Scholar 

  • S. Luding. Granular materials under vibration—simulations of rotating spheres. Phys. Rev. E, Vol. 52, pp. 4442, 1995.

    Article  ADS  Google Scholar 

  • P. N. Rowe. Fluidization, chapter 4, page 121. Academic Press, London and New York, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Flekkøy, E., Mcnamara, S., Måløy, K.J. (2000). Modeling Granular Flows. In: Skjeltorp, A.T., Edwards, S.F. (eds) Soft Condensed Matter: Configurations, Dynamics and Functionality. NATO Science Series, vol 552. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4189-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4189-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6403-0

  • Online ISBN: 978-94-011-4189-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics