Skip to main content

Plants as bioreactors for protein production: avoiding the problem of transgene silencing

  • Chapter
Book cover Plant Gene Silencing

Abstract

Plants are particularly attractive as large-scale production systems for proteins intended for therapeutical or industrial applications: they can be grown easily and inexpensively in large quantities that can be harvested and processed with the available agronomic infrastructures. The effective use of plants as bioreactors depends on the possibility of obtaining high protein accumulation levels that are stable during the life cycle of the transgenic plant and in subsequent generations. Silencing of the introduced transgenes has frequently been observed in plants, constituting a major commercial risk and hampering the general economic exploitation of plants as protein factories. Until now, the most efficient strategy to avoid transgene silencing involves careful design of the transgene construct and thorough analysis of transformants at the molecular level. Here, we focus on different aspects of the generation of transgenic plants intended for protein production and on their influence on the stability of heterologous gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, H., Dale, E.C., Lee, E. and Ow, D.W. 1995. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7: 649–659.

    PubMed  CAS  Google Scholar 

  • Arakawa, T., Chong, D.K.X. and Langridge, W.H.R. 1998. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nature Biotechnol. 16: 292–297.

    CAS  Google Scholar 

  • Arntzen, C.J. 1997. High-tech herbal medicine: plant-based vaccines. Nature Biotechnol. 15: 221–222.

    CAS  Google Scholar 

  • Aspegren, K., Mannonen, L., Ritala, A., Puupponen-Pimiä, R., Kurtén, U., Salmenkallio-Marttila, M., Kaupinnen, V. and Teeri, T.H. 1995. Secretion of a heat-stable fungal β-glucanase from transgenic, suspension-cultured barley cells. Mol. Breed. 1: 91–99.

    CAS  Google Scholar 

  • Barcelo, P. and Lazzeri, P.A. 1998. Direct gene transfer: chemical, electrical and physical methds. In: K. Lindsey (Ed.) Transgenic Plant Research, Harwood Academic Publishers, Amsterdam, pp. 35–55.

    Google Scholar 

  • Brandie, J.E., McHugh, S.G., James, L., Labbé, H. and Miki, B.L. 1995. Instability of transgene expression in field grown tobacco carrying the csrl-1 gene for sulfonylurea herbicide resistance. Bio/technology 13: 994–998.

    Google Scholar 

  • Breyne, P., Van Montagu, M., Depicker, A. and Gheysen, G. 1992. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell 4: 463–471.

    PubMed  CAS  Google Scholar 

  • Bosch. D., Smal, J. and Krebbers, E. 1994. A trout growth hormone is expressed, correctly folded and partially glycosylated in the leaves but not the seeds of transgenic plants. Transgenic Res. 3: 304–310.

    CAS  Google Scholar 

  • Cluster, P.D., O’Dell, M., Metzlaff, M. and Flavell, R.B. 1996. Details of T-DNA structural organization from a transgenic petunia population exhibiting co-suppression. Plant Mol. Biol. 32: 1197–1203.

    PubMed  CAS  Google Scholar 

  • Dale, P.J. and Irwin, J.A. 1998. Environmental impact of transgenic plants. In: K. Lindsey (Ed.) Transgenic Plant Research, Harwood Academic Publishers, Amsterdam, pp. 277–285.

    Google Scholar 

  • De Block, M. and Debrouwer, D. 1991. Two T-DNAs cotransformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor. Appl. Genet. 82: 257–263.

    Google Scholar 

  • De Buck, S., Jacobs, A., Van Montagu, M. and Depicker, A. 1999. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J. 20: 295–304.

    PubMed  Google Scholar 

  • De Buck, S., De Wilde, C., Van Montagu, M. and Depicker, A. 2000. Vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium transformation. Mol. Breed., in press.

    Google Scholar 

  • de Carvalho, F., Gheysen, G., Kushnir, S., Van Montagu, M., Inzé, D. and Castresana, C. 1992. Suppression of β-1,3-glucanase transgene expression in homozygous plants. EMBO J. 11: 2595–2602.

    PubMed  Google Scholar 

  • De Neve, M., De Loose, M, Jacobs, A., Van Houdt, H., Kaluza, B., Weidle, U., Van Montagu, M. and Depicker, A. 1993. Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis. Transgenic Res. 2: 227–237.

    PubMed  Google Scholar 

  • De Neve, M., De Buck, S., Jacobs, A., Van Montagu, M. and De-picker, A. 1997. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from ligation of separate T-DNAs. Plant J. 11: 15–29.

    PubMed  Google Scholar 

  • De Neve, M., Van Houdt, H., Bruyns, A.-M., Van Montagu, M. and Depicker, A. 1998. Screening for transgenic lines with stable and suitable accumulation levels of a heterologous protein. In: C. Cunningham and A.J.R. Porter (Eds.) Recombinant Proteins from Plants: Production and Isolation of Clinically Useful Compounds (Methods in Biotechnology, Vol. 3), Humana Press, Totowa, NJ, pp. 203–227.

    Google Scholar 

  • De Neve, M., De Buck, S., De Wilde, C., Van Houdt, H., Strobbe, I., Jacobs, A., Van Montagu, M. and Depicker A. 1999. Gene silencing results in instability of antibody production in transgenic plants. Mol. Gen. Genet. 260: 582–592.

    PubMed  Google Scholar 

  • De Wilde, C., De Jaeger, G., De Neve, M., Van Montagu, M. and Depicker, A. 1999 Production of antibodies in transgenic plants: a general introduction. In: K. Harper and A. Ziegler (Eds.) Recombinant Antibodies: Applications in Plant Science and Plant Pathology, Taylor and Francis, London, pp. 113–127.

    Google Scholar 

  • Dehio, C. and Schell, J. 1994. Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing. Proc. Natl. Acad. Sci. USA 91: 5538–5542.

    PubMed  CAS  Google Scholar 

  • Depicker, A. and Van Montagu, M. 1997. Post-transcriptional gene silencing in plants. Curr. Opin. Cell Biol. 9: 373–382.

    PubMed  Google Scholar 

  • Depicker, A., Ingelbrecht, I., Van Houdt, H., De Loose, M. and Van Montagu, M. 1996. Post-transcriptional reporter transgene silencing in transgenic tobacco. In: D. Grierson, G.W. Lycett and G.A. Tucker (Eds.) Mechanisms and Applications of Gene Silencing, Nottingham University Press, Nottingham, UK, pp. 71–84.

    Google Scholar 

  • Deroles, S.C. and Gardner, R.C. 1988. Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant. Mol. Biol. 11: 365–377.

    CAS  Google Scholar 

  • Dorlhac de Borne, F., Vincentz, M., Chupeau, Y. and Vaucheret, H. 1994. Co-suppression of nitrate reductase host genes and transgenes in transgenic tobacco plants. Mol. Gen. Genet. 243: 613–621.

    Google Scholar 

  • Eldelbaum, O., Stein, D., Holland, N., Gafni, Y., Livneh, O., Novick, D., Rubinstein, M. and Sela, I. 1992. Expression of active human interferon-β in transgenic plants. J. Interferon Res. 12: 449–453.

    Google Scholar 

  • Elmayan, T. and Vaucheret, H. 1996. Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J. 9: 787–797

    CAS  Google Scholar 

  • Elmayan, T., Balzergue, S., Béon, F., Bourdon, V, Daubremet, J., Guénet, Y., Mourrain, P., Palauqui, J.-C., Vernhettes, S., Vialle, T., Wostrikoff, K. and Vaucheret, H. 1998. Arabidopsis mutants impaired in co-suppression. Plant Cell 10: 1747–1757.

    PubMed  CAS  Google Scholar 

  • Elomaa, P., Helariutta, Y., Griesbach, R.J., Kotilainen, M., Seppä-nen, P. and Teeri, T.H. 1995. Transgene inactivation in Petunia hybrida is influenced by the properties of the foreign gene. Mol. Gen. Genet. 248: 649–656.

    PubMed  CAS  Google Scholar 

  • English, J.J., Mueller, E. and Baulcombe, D.C. 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8: 179–188.

    PubMed  CAS  Google Scholar 

  • Fecker, L.F., Kaufmann, A., Commandeur, U., Commandeur, J., Koenig, R. and Burgermeister, W. 1996. Expression of single-chain antibody fragments (scFv) specific for beet necrotic yellow vein virus coat protein or 25 kDa protein in Escherichia coli and Nicotiana benthamiana. Plant Mol. Biol. 32: 979–986.

    PubMed  CAS  Google Scholar 

  • Fiedler, U., Artsaenko, O., Phillips, J. and Conrad, U. 1999. Transgenic plants: a low cost production system for recombinant antibodies. In: K. Harper and A. Ziegler (Eds.) Recombinant Antibodies: Applications in Plant Science and Plant Pathology, Taylor and Francis, London, pp. 129–143.

    Google Scholar 

  • Finnegan, J. and McElroy, D. 1994. Transgene inactivation: plants fight back! Bio/technology 12: 883–888.

    Google Scholar 

  • Furner, I.J., Sheikh, M.A. and Collet, C.E. 1998. Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics 149: 651–662.

    PubMed  CAS  Google Scholar 

  • Gallie, D.R. 1998. Controlling gene expression in transgenics. Curr. Opin. Plant Biol. 1: 166–172.

    PubMed  CAS  Google Scholar 

  • Garrick, D., Fiering, S., Martin, D.I.K. and Whitelaw, E. 1998. Repeat-induced gene silencing in mammals. Nature Genet. 18: 56–59.

    PubMed  CAS  Google Scholar 

  • Gelvin, S.B. 1998. The introduction and expression of transgenes in plants. Curr. Opin. Biotechnol. 9: 227–232.

    PubMed  CAS  Google Scholar 

  • Gheysen, G., Angenon, G. and Van Montagu, M. 1998. Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications. In: K. Lindsey (Ed.) Transgenic Plant Research, Harwood Academic Publishers, Amsterdam, pp. 1–33.

    Google Scholar 

  • Goddijn, O.J.M. and Pen, J. 1995. Plants as bioreactors. Trends Biotechnol. 13: 379–387.

    CAS  Google Scholar 

  • Goossens, A., Dillen, W., De Clercq, J., Van Montagu, M. and Angenon, G. 1999. The arccelin-5 gene of Phaseolus vulgaris directs high seed-specific expression in transgenic Phaseolus acutifolius and Arabidopsis plants. Plant Physiol. 120: 1095–1104.

    PubMed  CAS  Google Scholar 

  • Grevelding, C., Fantes, V, Kemper, E., Schell, J. and Masterson, R. 1993. Single-copy T-DNA insertions in Arabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs. Plant Mol. Biol. 23: 847–860.

    PubMed  CAS  Google Scholar 

  • Hanson, B., Engler, D., Moy, Y., Newman, B., Ralston, E. and Gutterson, N. 1999. A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. Plant J. 19: 727–734.

    PubMed  CAS  Google Scholar 

  • Hart, C.M., Fischer, B., Neuhaus, J.-M. and Meins, F. 1992. Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol. Gen. Genet. 235: 179–188.

    PubMed  CAS  Google Scholar 

  • Hemming, D. 1995. Molecular farming: using transgenic plants to produce novel proteins and other chemicals. AgBiotech News Info. 7: 19N–29N.

    Google Scholar 

  • Herbers, K., Wilke, I. and Sonnewald, U. 1995. A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Bio/technology 13: 63–66.

    CAS  Google Scholar 

  • Hiatt, A., Cafferkey, R. and Bowdish, K. 1989. Production of antibodies in transgenic plants. Nature 342: 76–78.

    PubMed  CAS  Google Scholar 

  • Hood, E. and Jilka, J.M. 1999. Plant-based production of xenogenic proteins. Curr. Opin. Biotechnol. 10: 382–386.

    PubMed  CAS  Google Scholar 

  • Hood, E.E., Witcher, D.R., Maddock, S., Meyer, T., Baszczynski, C., Bailey, M., Flynn, P., Register, J., Marshall, L., Bond, D., Kulisek, E., Kusnadi, A., Evangelista, R., Nicolov, Z., Wooge, C., Mehigh, R.J., Hernan, R., Kappel, W.K., Ritland, D., Li, C.P. and Howard, J. 1997. Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol. Breed. 3: 291–306.

    CAS  Google Scholar 

  • Hobbs, S.L.A., Warkentin, T.D. and DeLong, C.M.O. 1993. Trans-gene copy number can be positively or negatively associated with transgene expression. Plant Mol. Biol. 21: 17–26.

    PubMed  CAS  Google Scholar 

  • Holmes-Davis, R. and Cornai, L. 1998. Nuclear matrix attachment regions and plant gene expression. Trends Plant Sci. 3: 91–97.

    Google Scholar 

  • Iglesias, V.A., Moscone, E.A., Papp, I., Neuhuber, F., Michalowski, S., Phelan, T., Spiker, S., Matzke, M. and Matzke, AJ.M. 1997. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9: 1251–1264.

    PubMed  CAS  Google Scholar 

  • Jakowitsch, J., Papp, I., Moscone, E.A., van der Winden, J., Matzke, M. and Matzke, A.J.M. 1999. Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J. 17: 131–140.

    PubMed  CAS  Google Scholar 

  • Jorgensen, R. 1994. Developmental significance of epigenetic impositions on the plant genome: a paragenetic function for chromosomes. Dev. Genet. 15: 523–532.

    Google Scholar 

  • Jorgensen, R.A. 1995. Co-suppression, flower color patterns, and metastable gene expression states. Science 268: 686–691.

    PubMed  CAS  Google Scholar 

  • Jorgensen, R., Snyder, C. and Jones, J.D.G. 1987. T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol. Gen. Genet. 207: 471–477.

    CAS  Google Scholar 

  • Jorgensen, R.A., Cluster, P.D., English, J., Que, A.Q. and Napoli, C.A. 1996. Chalcone synthase co-suppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol. Biol. 31: 957–973.

    PubMed  CAS  Google Scholar 

  • Khoudi, H., Laberge, S., Ferullo, J.-M., Bazin, R., Darveau, A., Castonguay, Y., Allard, G., Lemieux, R. and Vézina, L.-P. 1999. Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol. Bioengineer. 64: 135–143.

    CAS  Google Scholar 

  • Kilby, N.J., Leyser, O.H.M. and Fumer, I.J. 1992. Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol. Biol. 20: 103–112.

    PubMed  CAS  Google Scholar 

  • Koncz, C., Németh, K., Rédei, G.P. and Schell, J. 1994. Homology recognition during T-DNA integration into the plant genome. In: J. Paszkowski (Ed.) Homologous Recombination and Gene Silencing in Plants, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 167–189.

    Google Scholar 

  • Kononov, M.E., Bassuner, B. and Gelvin, S.B. 1997. Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J. 11: 945–957.

    PubMed  CAS  Google Scholar 

  • Kooter, J.M., Matzke, M.A. and Meyer P. 1999. Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4: 340–347.

    PubMed  Google Scholar 

  • Kusnadi, A.R., Nikolov, Z.L. and Howard, J.A. 1997. Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol. Bioengineer. 56: 473–484.

    CAS  Google Scholar 

  • Liu, J.-H., Selinger, L.B., Cheng, K.-L., Beauchemin, K.A. and Moloney, M.M. 1997. Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Mol. Breed. 3: 463–470.

    CAS  Google Scholar 

  • Ma, J.K.-C., Hiatt, A., Hein, M., Vine, N.D., Wang, F., Stabila, P., van Dolleweerd, C., Mostov, K. and Lehner, T. 1995. Generation and assembly of secretory antibodies in plants. Science 268: 716-179.

    Google Scholar 

  • Ma, J.K.-C., Hikmat, B.Y., Wycoff, K., Vine, N.D., Chargelegue, L.Y., Nein, M.B. and Lehner, T. 1998. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nature Med. 4: 601–606.

    PubMed  CAS  Google Scholar 

  • Magnuson, N.S., Linzmaier, P.M., Reeves, R., An, G., Hay-Glass, K. and Lee, J.M. 1998. Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Exp. Purif. 13: 45–52.

    CAS  Google Scholar 

  • Martineau, B., Voelker, T.A. and Sanders, R.A. 1994. On defining T-DNA. (Letter to the Editor.) Plant Cell 6: 1032–1033.

    PubMed  Google Scholar 

  • Mason, H.S. and Arntzen, C.J. 1995. Transgenic plants as vaccine production systems. Trends Biotechnol. 13: 388–392.

    PubMed  CAS  Google Scholar 

  • Mason, H.S., Haq, T.A., Clements, J.D. and Arntzen, C.J. 1998. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine 16: 1336–1343.

    PubMed  CAS  Google Scholar 

  • Matsumoto, S., Ikura, K., Ueda, M. and Sasaki, R. 1995. Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol. Biol. 27: 1163–1172.

    PubMed  CAS  Google Scholar 

  • Matzke, A.J.M. and Matzke, M.A. 1998. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol. 1: 142–148.

    PubMed  CAS  Google Scholar 

  • Matzke, M.A.. Primig, M., Trnovsky, J. and Matzke, AJ.M. 1989. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8: 643–649.

    PubMed  CAS  Google Scholar 

  • Matzke, A.J.M., Neuhuber, F., Park, Y.-D., Ambros, P.F. and Matzke, M.A. 1994. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 244: 219–229.

    PubMed  CAS  Google Scholar 

  • Metzlaff, M., O’Dell, M., Cluster, P.D. and Flavell, R.B. 1997. RNA-mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell 88: 1–20.

    Google Scholar 

  • Meyer, P. 1998. Stabilities and instabilities in transgene expression. In: K. Lindsey (Ed.) Transgenic Plant Research, Harwood Academic Publishers, Amsterdam, pp. 263–275.

    Google Scholar 

  • Meyer, P. and Heidmann, I. 1994. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243: 390–399.

    PubMed  CAS  Google Scholar 

  • Meyer, P. and Saedler, H. 1996. Homology-dependent gene silencing in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 23–48.

    PubMed  CAS  Google Scholar 

  • Meyer, P., Linn, F., Heidmann, I., Meyer, H., Niedenhof, I. and Saedler, H. 1992. Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic Petunia and its colour phenotype. Mol. Gen. Genet. 231: 345–352.

    PubMed  CAS  Google Scholar 

  • Meyer, P., Heidmann, I., and Niedenhof, I. 1993. Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic Petunia. Plant J. 4: 89–100.

    PubMed  CAS  Google Scholar 

  • Mittelsten Scheid, O., Afsar, K. and Pazkowski, J. 1998. Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 632–637.

    PubMed  CAS  Google Scholar 

  • Mlynarova, L., Keizer, L.C.P., Stiekema, WJ. and Nap, J.-P. 1996. Approaching the lower limits of transgene variability. Plant Cell 8: 1589–1599.

    PubMed  CAS  Google Scholar 

  • Moffat, A.S. 1995. Exploring transgenic plants as a new vaccine source. Science 268: 658–661.

    PubMed  CAS  Google Scholar 

  • Moloney, M.M. and Holbrook, L.A. 1997. Subcellular targeting and purification of recombinant proteins in plant production systems. Biotechnol. Genet. Engineer. Rev. 14: 321–336.

    CAS  Google Scholar 

  • Morino, K., Olsen, O.-A. and Shimamoto, K. 1999. Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene. Plant J. 17: 275–285.

    PubMed  CAS  Google Scholar 

  • Napoli, C., Lemieux, C. and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into Petunia results in re-versible co-suppression of homologous genes in trans. Plant Cell 2: 279–289.

    PubMed  CAS  Google Scholar 

  • Palauqui, J.P. and Vaucheret, H. 1995. Field trial analysis of nitrate reductase co-suppression: a comparative study of 38 combinations of transgene loci. Plant Mol. Biol. 29: 149–159.

    PubMed  CAS  Google Scholar 

  • Palauqui, J.-C., Elmayan, T., Dorlhac de Borne, F., Crété, P., Charles, C. and Vaucheret, H. 1996. Frequencies, timing, and spatial patterns of co-suppression of nitrate reductase and nitrite reductase in transgenic tobacco plants. Plant Physiol. 112: 1447–1456.

    PubMed  CAS  Google Scholar 

  • Palauqui, J.-C., Elmayan, T., Pollien, J.-M. and Vaucheret, H. 1997. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stock to non-silenced scions. EMBO J. 16: 4738–4745.

    PubMed  CAS  Google Scholar 

  • Parmenter, D.L., Boothe, J.G., van Rooijen, G.J.H., Yeung, E.C. and Moloney, M.M. 1995. Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol. Biol. 29: 1167–1180.

    PubMed  CAS  Google Scholar 

  • Peach, C. and Veiten, J. 1991. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol. Biol. 17: 49–60.

    PubMed  CAS  Google Scholar 

  • Pen, J., Molendijk, L., Quax, W.J., Sijmons, P.C., van Ooyen, A.J.J., van den Elzen, P.J.M., Rietveld, K. and Hoekema, A. 1992. Production of active Bacillus licheniformis α-amylase in tobacco and its application in starch liquefaction. Bio/technology 10: 292–296.

    PubMed  CAS  Google Scholar 

  • Pen, J., Verwoerd, T.C., van Paridon, P.A., Beudeker, R.F., van den Elzen, P.J.M., Geerse, K., van der Klis, J.D., Versteegh, H.A.J., van Ooyen, A.J.J. and Hoekema, A. 1993. Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/technology 11: 811–814.

    CAS  Google Scholar 

  • Phillipson, B.A. 1993. Expression of ahybrid(l-3,l-4)-β-glucanase in barley protoplasts. Plant Sci. 91: 195–206.

    CAS  Google Scholar 

  • Que, Q., Wang, H.-Y., English, J.J. and Jorgensen, R.A. 1997. The frequency and degree of co-suppression by sense chalcone syn-thase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9: 1357–1368.

    PubMed  CAS  Google Scholar 

  • Ramanathan, V. and Veluthambi, K. 1995. Transfer of non-T-DNA portions of the Agrobacterium tumefaciens Ti plasmid pTiA6 from the left terminus of TL-DNA. Plant Mol. Biol. 28: 1149–1154.

    PubMed  CAS  Google Scholar 

  • Salinas, J., Matassi, G., Montero, L.M. and Bernardi, G. 1988. Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucl. Acids Res. 16: 4269–4285.

    PubMed  CAS  Google Scholar 

  • Selker, E.U. 1999. Gene silencing: repeats that count. Cell 97: 157–160.

    PubMed  CAS  Google Scholar 

  • Sijen T., Wellink, J., Hiriart, J.-B. and van Kammen A. 1996. RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted regions. Plant Cell 8: 2277–2294.

    PubMed  CAS  Google Scholar 

  • Smyth, D.R. 1999. Gene silencing: plants and viruses fight it out. Curr. Biol. 9: R100–R102.

    PubMed  CAS  Google Scholar 

  • Srivastava, V, Anderson, O.D. and Ow., D.W. 1999. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc. Natl. Acad. Sci. USA 96: 11117–11121.

    PubMed  CAS  Google Scholar 

  • Stam, M., Mol, J.N.M. and Kooter, J.M. 1997a. The silence of genes in transgenic plants. Ann. Bot. 79: 3–12.

    CAS  Google Scholar 

  • Stam, M., de Bruin, R., Renter, S., van der Hoorn, R.A.L., van Blokland, R., Mol, J.N.M. and Kooter, J.M. 1997b. Post-transcriptional silencing of chalcone synthase in Petunia by inverted transgene repeats. Plant J. 12: 63–82.

    CAS  Google Scholar 

  • Stam, M., Viterbo, A., Mol, J.N.M. and Kooter, J.M. 1998. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttran-scriptional silencing of homologous host genes in plants. Mol. Cell Biol. 18:6165–6177.

    PubMed  CAS  Google Scholar 

  • Tacket, C.O., Mason, H.S., Losonky, G., Clements, J.D., Levine, M.M. and Aratzen, C.J. 1998. Immunogenicity in humans of a recombinant bacterial artigen delivered in a transgenic potato. Nature Med. 4: 607–609.

    PubMed  CAS  Google Scholar 

  • ten Lohuis, M., Galliano, H., Heidmann, I. and Meyer, P. 1995. Treatment with propionic and butyric acid enhances expression variegation and promoter methylation in plant transgenes. Biol. Chem. Hoppe-Seyler 376: 311–320.

    PubMed  CAS  Google Scholar 

  • Thompson, A.J. and Myatt, S.C. 1997. Tetracycline-dependent activation of an upstream promoter reveals transcriptional interference between tandem genes within T-DNA in tomato. Plant Mol. Biol. 34: 687–692.

    PubMed  CAS  Google Scholar 

  • van der Graaff, E., den Dulk-Ras, A. and Hooykaas, P.J.J. 1996. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants. Plant Mol. Biol. 31: 677–681.

    PubMed  Google Scholar 

  • van der Krol, A., Mur, L.A., Beld, M., Mol, J.N.M. and Stuitje, A.R. 1990. Flavonoid genes in Petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2: 291–299.

    PubMed  Google Scholar 

  • van Engelen, F.A., Schouten, A., Molthoff, J.W., Roosien, J., Salinas, J., Dirkse, W.G., Schots, A., Bakker, J., Gommers, F.J., Jongsma, M.A., Bosch, D. and Stiekema, W.J. 1994. Coordinate expression of antibody subunit genes yields high levels of functional antibodies in roots of transgenic tobacco. Plant Mol. Biol. 26: 1701–1710.

    PubMed  Google Scholar 

  • Van Houdt, H., Ingelbrecht, I., Van Montagu, M. and Depicker A. 1997. Post-transcriptional silencing of a neomycin phosphotransferase II transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 3′ flanking regions. Plant J. 12: 379–392.

    Google Scholar 

  • Van Houdt, H., Van Montagu, M. and Depicker, A. 2000. Both sense and antisense RNAs are targets for the sense transgene-induce posttranscriptional silencing mechanism. Mol. Gen. Genet.: in press.

    Google Scholar 

  • Vandekerckhove, J., Van Damme, J., Van Lijsebettens, M., Botterman, J., De Block, M., Vandewiele, M., De Clercq, A., Leemans, J., Van Montagu, M. and Krebbers, E. 1989. Enkephalins produced in transgenic plants using modified 2S seed storage proteins. Bio/technology 7: 929–932.

    CAS  Google Scholar 

  • Vaucheret, H. 1993. Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant: 90 bp of homology in the promoter sequences are sufficient for trans-inactivation. C. R. Acad. Sci. Paris 317: 310–323.

    Google Scholar 

  • Vaucheret, H., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.-B., Mourrain, P., Palauqui, J.-C. and Vernhettes, S. 1998. Transgene-induced gene silencing in plants. Plant J. 16: 651–659.

    PubMed  CAS  Google Scholar 

  • Verwoerd, T.C., van Paridon, P.A., van Ooyen, A.J.J., van Lent, J.W.M., Hoekema, A. and Pen, J. 1995. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol. 109: 1199–1205.

    PubMed  CAS  Google Scholar 

  • Voinnet, O. and Baulcombe, D. 1997. Systemic signalling in gene silencing. Nature 389: 553.

    PubMed  CAS  Google Scholar 

  • Voss, A., Niersbach, M., Hain, R., Hirsch, HJ., Liao, Y.C., Kreuzaler, F. and Fischer, R. 1995. Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody. Mol. Breed. 1:39–50.

    CAS  Google Scholar 

  • Walter, C., Broer, I., Hillemann, D. and Pühler, A. 1992. High frequency, heat treatment-induced inactivation of the phosphinotricin resistance gene in transgenic single cell suspension cultures of Medicago sativa. Mol. Gen. Genet. 235: 189–196.

    PubMed  CAS  Google Scholar 

  • Wassenegger, M., Heimes, S., Riedel, L. and Sänger, H.L. 1994. RNA-directed de novo methylation of genomic sequences in plants. Cell 76: 567–576.

    PubMed  CAS  Google Scholar 

  • Waterhouse, P.M., Smith, N.A. and Wang, M.B. 1999. Virus resistance and gene silencing: killing the messenger. Trends Plant Sci. 4: 452–457.

    PubMed  Google Scholar 

  • Wenck, A., Czakó, M., Kanevski, I. and Márton, L. 1997. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol. Biol. 43: 913–922.

    Google Scholar 

  • Witcher, D.R., Hood, E.E., Peterson, D., Bailey, M., Bond, D., Kusnadi, A., Evangelista, R., Nikolov, Z., Wooge, C., Mehigh, R., Kappel, W., Register, J. and Howard, J.A. 1998. Commercial production of ß-glucuronidase (GUS): a model system for the production of proteins in plants. Mol. Breed. 4: 301–312.

    CAS  Google Scholar 

  • Wolffe, A.P. 1997. Transcription control: repressed repeats express themselves. Curr. Biol. 7: R796–R798.

    PubMed  CAS  Google Scholar 

  • Wolters, A.-M.A., Trindade, L.M., Jacobsen, E. and Visser, R.G.F. 1998. Fluorescence in situ hybridisation on extended DNA fibers as a tool to analyze complex T-DNA loci in potato. Plant J. 13: 837–847.

    CAS  Google Scholar 

  • Yoder, J.A., Walsh, C.P. and Bestor, T.H. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335–340.

    PubMed  CAS  Google Scholar 

  • Zeitlin, L., Olmsted, S.S., Moench, T.R., Co, M.S., Martinell, B.J., Paradkar, V.M., Rüssel, D.R., Queen, C., Cone, R.A. and Whaley, K.J. 1998. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nature Biotechnol. 16: 1361–1364.

    CAS  Google Scholar 

  • Zhong, G.-Y., Peterson, D., Delaney, D.E., Bailey, M., Witcher, D.R., Register III, J.C., Bond, D., Li, C.-P., Marshall, L., Kulisek, E., Ritland, D., Meyer, T., Hood, E. and Howard, J. 1999. Commercial production of aprotinin in transgenic maize seeds. Mol. Breed. 5: 345–356.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Wilde, C., Van Houdt, H., De Buck, S., Angenon, G., De Jaeger, G., Depicker, A. (2000). Plants as bioreactors for protein production: avoiding the problem of transgene silencing. In: Matzke, M.A., Matzke, A.J.M. (eds) Plant Gene Silencing. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4183-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4183-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5821-6

  • Online ISBN: 978-94-011-4183-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics