Advertisement

Imaginative Cosmology

Chapter
  • 212 Downloads
Part of the Astrophysics and Space Science Library book series (ASSL, volume 247)

Abstract

We review1 a few off-the-beaten-track ideas in cosmology. They solve a variety of fundamental problems; also they are fun. We start with a description of non-singular dilaton cosmology. In these scenarios gravity is modified so that the Universe does not have a singular birth. We then present a variety of ideas mixing string theory and cosmology. These solve the cosmological problems usually solved by inflation, and furthermore shed light upon the issue of the number of dimensions of our Universe. We finally review several aspects of the varying speed of light theory. We show how the horizon, flatness, and cosmological constant problems may be solved in this scenario. We finally present a possible experimental test for a realization of this theory: a test in which the Supernovae results are to be combined with recent evidence for redshift dependence in the fine structure constant.

Keywords

Black Hole Critical Line Cosmological Constant Problem Hubble Diagram Standard Candle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Brandenberger, Inflationary Cosmology: Progress and Problems, these proceedings, hep-ph/9910410.Google Scholar
  2. 2.
    F. Adams, K. Freese and A. Guth, Phys. Rev. D43, 965 (1991).ADSGoogle Scholar
  3. 3.
    A. Borde and A. Vilenkin, Phys. Rev. Lett. 72, 3305 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    R. Brandenberger and C. Vafa, Nucl. Phys. B316, 391 (1989).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    A. Albrecht and J. Magueijo, Phys. Rev. D59, 43516 (1998).Google Scholar
  6. 6.
    J. Moffat, Int. J. Mod. Phys. D2, 351 (1993).ADSGoogle Scholar
  7. 7.
    R. Penrose, Phys. Rev. Lett. 14, 57 (1965).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    S. W. Hawking, Proc. Roy. Soc. Lond. 300, 182 (1967).ADSGoogle Scholar
  9. 9.
    A. D. Linde, Phys. Lett. B129, 177 (1983).MathSciNetADSGoogle Scholar
  10. 10.
    M. Gasperini and G. Veneziano, Astropart. Phys. 1, 317 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    G. Veneziano, hep-th/9802057 (1998).Google Scholar
  12. 12.
    R. Brustein and G. Veneziano, Phys. Lett. B329, 429 (1994).ADSGoogle Scholar
  13. 13.
    R. Easther, K. Maeda, and D. Wands, Phys. Rev. D53, 4247 (1996).ADSGoogle Scholar
  14. 14.
    N. Kaloper, R. Madden, and K. A. Olive, Nucl. Phys. B452, 677 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    N. Kaloper, R. Madden, and K. A. Olive, Phys. Lett. B371, 34 (1996).MathSciNetADSGoogle Scholar
  16. 16.
    M. Markov, Pis’ma Zh. Eksp. Theor. Fiz. 36, 214 (1982);Google Scholar
  17. M. Markov, Pis’ma Zh. Eksp. Theor. Fiz. 46, 342 (1987);ADSGoogle Scholar
  18. V. Ginsburg, V. Mukhanov and V. Frolov, Pis’ma Zh. Eksp. Theor. Fiz. 94, 3 (1988);Google Scholar
  19. V. Frolov, M. Markov and V. Mukhanov, Phys. Rev. D41, 383 (1990).MathSciNetADSGoogle Scholar
  20. 17.
    V. Mukhanov and R. Brandenberger, Phys. Rev. Lett. 68, 1969 (1992).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 18.
    R. Brandenberger, V. Mukhanov and A. Sornborger, Phys. Rev. D48, 1629 (1993).MathSciNetADSGoogle Scholar
  22. 19.
    M. Trodden, V. Mukhanov and R. Brandenberger, Phys. Lett. B316, 483 (1993).MathSciNetADSGoogle Scholar
  23. 20.
    R. Brandenberger, R. Easther and J. Maia, JHEP 9808: 007 (1998) gr-qc/9806111.ADSCrossRefGoogle Scholar
  24. 21.
    D. Easson and R. Brandenberger, JHEP 9909: 003 (1999) hep-th/9905175.MathSciNetADSCrossRefGoogle Scholar
  25. 22.
    N. Kaloper, A. Linde and R. Bousso, Phys. Rev. D59, 043508 (1999).ADSGoogle Scholar
  26. 23.
    A. Starobinsky, Phys. Lett. B91, 99 (1980).ADSGoogle Scholar
  27. 24.
    K. Kikkawa and M. Yamasaki, Phys. Lett. B149, 357 (1984)MathSciNetADSGoogle Scholar
  28. N. Sakai and I. Senda, Prog. Theor. Phys. 75, 692 (1986)MathSciNetADSCrossRefGoogle Scholar
  29. B. Sathiapalan, Phys. Rev. Lett. 58, 1597 (1987)ADSGoogle Scholar
  30. P. Ginsparg and C. Vafa, Nucl. Phys. B289, 414 (1987).MathSciNetADSCrossRefGoogle Scholar
  31. 25.
    R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965).Google Scholar
  32. 26.
    D. Mitchell and N. Turok, Nucl. Phys. B294, 1138 (1987).MathSciNetADSCrossRefGoogle Scholar
  33. 27.
    N. Deo, S. Jain and C.-I. Tan, Phys. Rev. D40, 2626 (1989).ADSGoogle Scholar
  34. 28.
    G. Veneziano, Phys. Lett. B265, 287 (1991).MathSciNetADSGoogle Scholar
  35. 29.
    A. Tseytlin and C. Vafa, Nucl. Phys. B372, 443 (1992).MathSciNetADSCrossRefGoogle Scholar
  36. 30.
    A. Vilenkin and E.P.S. Shellard, Cosmic Strings and other Topological Defects(Cambridge Univ. Press, Cambridge, 1994 ).zbMATHGoogle Scholar
  37. 31.
    M. Hindmarsh and T.W.B. Kibble, Reprt. Prog. Phys. 58, 477 (1995).MathSciNetADSCrossRefGoogle Scholar
  38. 32.
    R. Brandenberger, Int. J. Mod. Phys. A9, 2117 (1994).ADSGoogle Scholar
  39. 33.
    M. Sakellariadou, Nucl. Phys. B468, 319 (1996).ADSCrossRefGoogle Scholar
  40. 34.
    J.D. Barrow, Phys. Rev. D59 043515 (1999).MathSciNetADSGoogle Scholar
  41. 35.
    J.D. Barrow and J. Magueijo, Phys. Lett. B443, 104 (1998).ADSGoogle Scholar
  42. 36.
    J.D. Barrow and J. Magueijo, Phys. Lett. B447, 246 (1999).ADSGoogle Scholar
  43. 37.
    J.D. Barrow and J. Magueijo, Class. Quant. Gray. 16, 1435 (1999).MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 38.
    M. A. Clayton, J. W. Moffat, Phys.Lett. B460, 263 (1999).ADSGoogle Scholar
  45. 39.
    M. A. Clayton, J. W. Moffat, gr-qc/9910112.Google Scholar
  46. 40.
    J.D. Barrow and C. O’Toole, “Spatial Variations of Fundamental Constants”, astro-ph 9904116.Google Scholar
  47. 41.
    I. T. Drummond, gr-gc/9908058.Google Scholar
  48. 42.
    J.K. Webb, V.V. Flambaum, C.W. Churchill, M.J. Drinkwater and J.D. Barrow, Phys. Rev. Lett. 82, 884 (1999).ADSCrossRefGoogle Scholar
  49. 43.
    J.D.Bekenstein, Corn. on Astroph. VIII, 89 (1979).ADSGoogle Scholar
  50. 44.
    J.D.Bekenstein, Phys. Rev. D25, 1527 (1982).ADSGoogle Scholar
  51. 45.
    P. P. Avelino and C. J. A. P. Martins, Phys. Lett. B459, 468 (1999).MathSciNetADSGoogle Scholar
  52. 46.
    D. H. Coule, gr-qc/9811058.Google Scholar
  53. 47.
    S. Weinberg, “Theories of the cosmological constant”, in Critical dialogues in cosmology, ed. Neil Turok, (World Scientific, Singapore, 1997), astro-ph/9610044.Google Scholar
  54. 48.
    V. Mukhanov and G. Chibisov, Zh. Eksp. Thor. Fiz 83(1982) 475.ADSGoogle Scholar
  55. S. W. Hawking, Phys. Lett B115(1982) 295.ADSGoogle Scholar
  56. A. Starobinsky, Phys. Lett. B117(1982) 175.ADSGoogle Scholar
  57. A. Guth and S.-Y. Pi Phys. Rev. Lett. 49, (1982) 1110.ADSCrossRefGoogle Scholar
  58. J. Bardeen, P. Steinhardt, and M. Turner, Phys. Rev. D 28(1983) 679.ADSCrossRefGoogle Scholar
  59. 49.
    P.J.E. Peebles, Principles of Physical Cosmology, 371–373 (Princeton Univ. Press, Princeton).Google Scholar
  60. 50.
    I. Zlatev, L. Wang, P. Steinhardt, Phys. Rev. Lett. 82(1999) 896 - 899.ADSCrossRefGoogle Scholar
  61. 51.
    J. D. Barrow and J. Magueijo, astro-ph/9907354.Google Scholar
  62. 52.
    S. Perlmutter et al, Ap. J. 483, 565 (1997)ADSCrossRefGoogle Scholar
  63. S. Perlmutter et al (The Supernova Cosmology Project), Nature 39151 (1998).ADSCrossRefGoogle Scholar
  64. 53.
    P. Garnavich et al. Ap. J. (Lett.) 493, L53 (1998).ADSCrossRefGoogle Scholar
  65. 54.
    B. Schmidt, Ap J. 507, 46 (1998).ADSCrossRefGoogle Scholar
  66. 55.
    A. Riess et al., Ap. J. 116, 1009 (1998).Google Scholar
  67. 56.
    E. Kiritsis, hep-th/9906206.Google Scholar
  68. 57.
    S. Alexander, “On the varying speed of light in a brane-induced FRW Universe”, hep-th/9912037.Google Scholar
  69. 58.
    S. N. Manida, gr-qc/9905046.Google Scholar
  70. 59.
    S. S. Stepanov, physics/9909009, astro-ph/9909311.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  1. 1.Physics DepartmentBrown UniversityProvidenceUSA
  2. 2.Theoretical Physics, The Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations