Advertisement

Probability Theory

  • Horst Osswald
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 510)

Abstract

In this chapter we apply the Saturation Principle to the profound mathematical theory of Brownian motion and, ultimately, analysis on Wiener spaces. The latter subject is often called the Malliavin-calculus or the stochastic calculus of variation. Using the *-extension of the positive integers, the notion of finiteness can be extended so that processes with discrete time and those with continuous time are almost indistinguishable. Moreover, the L p -space over Wiener measure on the set C [0,1] of continuous functions on [0,1] is equivalent to a subspace of L p (*ℝ H L ). Here H is an unlimited positive integer and Γ L is the Loeb measure — over the H-fold centered Gaussian distribution with variance 1/H — restricted to the σ-algebra generated by a Brownian motion defined on the hyperfinite dimensional Euclidean space * H Equivalence of these Banach spaces means that analysis on the classical Wiener space is closely related to the finite dimensional calculus. The idea of taking *ℝ H instead of C[0,1] is due to Nigel Cutland and Siu A-Ng [7].

Keywords

Brownian Motion Standard Part Wiener Space Admissible Sequence Internal Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Albeverio, J. E. Fenstad, R. Høegh Krohn, T. Lindstrøm, Nonstandard methods in stochastic analysis and mathematical physics, Academic Press, Orlando, 1986.zbMATHGoogle Scholar
  2. 2.
    R. M. Anderson, A nonstandard representation of Brownian motion and Itô integration, Israel J. Math. 25(1976), 15–46.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R. B. Ash, Real Analysis and Probability, Academic Press, New York, 1972.Google Scholar
  4. 4.
    N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, de Gruyter Studies in Mathematics, Walter de Gruyter, Berlin, 1991.zbMATHCrossRefGoogle Scholar
  5. 5.
    K. L. Chung, R. J. Williams, Introduction to Stochastic Integration, 2ed edition, Birkhäuser, Boston, 1990.zbMATHCrossRefGoogle Scholar
  6. 6.
    N. Cutland, Infinitesimals in Action, J. Lond. Math. Soc. 35(1987), 202–216.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    N. Cutland, S.-A. Ng, A nonstandard approach to the Malliavin calculus, in: Advances in Analysis, Probability and Mathematical Physics — Contributions of Nonstandard Analysis, S. Albeverio, W. A. J. Luxemburg and M. P. H. Wolff (eds.), Kluwer Acad. Publ., Dordrecht, 1995, 149–170.Google Scholar
  8. 8.
    L. Debnath, P. Mikusinski, Introduction to Hilbert spaces and applications, Academic Press, Orlando, 1990.Google Scholar
  9. 9.
    J. L. Doob, Stochastic Processes, Wiley, New York, 1953.zbMATHGoogle Scholar
  10. 10.
    T. Duncan, P. Varaiya, On the solutions of a stochastic control system, SIAM J. Control, #5 13(1975), 1077-10 92.Google Scholar
  11. 11.
    M. X. Fernique, Intégrabilité des Vecteurs Gaussian, Académie des Sciences, Paris, Compte Rendus 270 Séries A (1970) 1698–1699.MathSciNetzbMATHGoogle Scholar
  12. 12.
    L. Gross, Measurable functions on Hilbert space, Trans. Amer. Math. Soc. 105(1962) 372–390.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    P. R. Halmos, Measure Theory, D. van Nostrand, Princeton, 1959.Google Scholar
  14. 14.
    D. L. Hoover, E. A. Perkins, Nonstandard construction of the stochastic integral and applications to stochastic differential equations I and II, Trans. Amer. Math. Soc. 275(1983), 1–58.MathSciNetzbMATHGoogle Scholar
  15. 15.
    A. E. Hurd, P. A. Loeb, An introduction to Nonstandard Real Analysis, Academic Press, Orlando, 1985.zbMATHGoogle Scholar
  16. 16.
    P. Imkeller, Malliavin Kalkül, lecture notes, 1988.Google Scholar
  17. 17.
    I. Karatzas, S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin, 1988.zbMATHCrossRefGoogle Scholar
  18. 18.
    H. J. Keisler, An infinitesimal approach to stochastic analysis, Memoirs Amer. Math. Soc. 48(1984).Google Scholar
  19. 19.
    H. H. Kuo, Gaussian measures on Banach spaces, Lecture notes in Mathematics 463(1975).Google Scholar
  20. 20.
    M. Ledoux, M. Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag 23(1991).Google Scholar
  21. 21.
    P. Lévy, Téorie de l’addition des variables alétoires, Gauthier-Villars, Paris 1937.Google Scholar
  22. 22.
    —, Processus stochastiques et mouvement Brownian, Gauthier-Villars, Paris, 1965.zbMATHGoogle Scholar
  23. 23.
    T. Lindstrøm, Hyperfinite stochastic integration I, II, III, and Addendum, Math. Scand. 46(1980), 265–333.MathSciNetzbMATHGoogle Scholar
  24. 24.
    —, A Loeb measure approach to theorems of Prohorov, Sazonov and Gross, Trans. Amer. Math. Soc. 269(1982), 521–534.MathSciNetzbMATHGoogle Scholar
  25. 25.
    P. A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211(1975), 131–122.MathSciNetCrossRefGoogle Scholar
  26. 26.
    —, A functional approach to nonstandard measure theory, Contemporary Mathematics 26(1984), 251–261.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    W. A. J. Luxemburg, A general theory of monads, in: Application of Model Theory, Algebra, Analysis and Probability, W. A. J. Luxemburg (ed.), Hold, Rinehart and Winston, New York, 1969, 18–86.Google Scholar
  28. 28.
    P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, Proc. Inter. Symp. on Stoch. Diff. Equations, Kyoto 1976, (1978), 195–263.Google Scholar
  29. 29.
    E. Nelson, An existence theorem for second order parabolic equations, Trans. Amer. Math. Soc. 88(1958), 414–429.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 1995.zbMATHGoogle Scholar
  31. 31.
    H. Osswald, Infinitesimals in abstract Wiener spaces, preprint.Google Scholar
  32. 32.
    —, Extensions of the classical Wiener space and anticipating Girsanov transformations, preprint.Google Scholar
  33. 33.
    A. Robinson, Nonstandard Analysis, North-Holland, Amsterdam, 1966.Google Scholar
  34. 34.
    H. L. Royden, Real Analysis, The Macmillan Company, New York, 1963.zbMATHGoogle Scholar
  35. 35.
    W. Rudin, Functional Analysis, McGraw Hill, New York, 1973.zbMATHGoogle Scholar
  36. 36.
    B. Simon, Trace ideals and their Applications, Cambridge University Press, Cambridge, 1979.zbMATHGoogle Scholar
  37. 37.
    A. V. Skorohod, On a generalization of a stochastic integral, Th. Prob. Appl. 20(1975), 219–233.CrossRefGoogle Scholar
  38. 38.
    O. G. Smolyanov, H. v. Weizsäcker, Smooth Probability Measures and Associated Differential Operators, to appear in Inf. Dim Anal. Quantum Prob. Google Scholar
  39. 39.
    Y. N. Sun, A theory of hyperfmite processes, the complete removal of individual uncertainty via exact LLN, Journal of Mathematical Economics 29(1998), 419–503.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    A. S. Üstünel, M. Zakai, Transformation of Measure on Wiener Space, manuscript of a forthcoming book.Google Scholar
  41. 41.
    N. Wiener, The homogeneous chaos, Amer. J. Math. 60(1938), 879–936.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Horst Osswald
    • 1
  1. 1.Mathematisches Institut der Universität MünchenMünchenGermany

Personalised recommendations