Advertisement

Functional Analysis

  • Manfred P. H. Wolff
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 510)

Abstract

In this chapter we deal with old and new applications of nonstandard analysis to functional analysis. In particular we consider the structure theory of Banach spaces, basic operator theory, strongly continuous semigroups of operators, and approximation theory of operators and their spectra. To include in this chapter interesting examples of nonstandard functional analysis we must assume that the reader is familiar with the basics of Banach spaces and operator theory. Nonexperts in these field can, however, profit from this chapter by looking at the elementary applications with which we begin every section.

Keywords

Banach Space Compact Operator Banach Lattice Fredholm Operator Normed Linear Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Albeverio, J. E. Fenstad, R. Hoegh-Krohn, T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, Orlando, 1986.zbMATHGoogle Scholar
  2. 2.
    S. Albeverio, E. Gordon, A. Khrennikov, Finite dimensional approximations of operators in the spaces of functions on locally compact abelian groups, submitted to Acta Applic. Mathem, 1999Google Scholar
  3. 3.
    S. K. Berberian, Approximate proper vectors, Proc. AMS 13(1962), 111–114.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. R. Bernstein, A. Robinson, Solution of an invariant subspace problem of K. T. mith and P. R. Halmos, Pacific J. Math. 16(1966), 421–431MathSciNetzbMATHGoogle Scholar
  5. 5.
    S. Buoni, R. Harte, A. W. Wickstead, Upper and lower Fredholm spectra I, Proc. AMS 66(1977), 309–314.MathSciNetzbMATHGoogle Scholar
  6. 6.
    A. Connes, Noncommutative Geometry, Academic Press, New York, 1994.zbMATHGoogle Scholar
  7. 7.
    J. J. M. Chadwick, A. W. Wickstead, A quotient of ultrapowers of Banach spaces and semi-Fredholm operators, Bull. London Math. Soc. 9(1977), 321–325.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    D. Dacunha-Castelle, J. L. Krivine, Application des ultraproducts a l’etude des espaces et des algebres de Banach, Studia Math. 41(1995), 315–334.MathSciNetGoogle Scholar
  9. 9.
    M. Davis, Applied Nonstandard Analysis, Wiley, New York, 1977.zbMATHGoogle Scholar
  10. 10.
    R. Derndinger, Über das Spektrum positiver Generatoren, Mathm. Z. 172(1980), 281–293.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    N. Dunford, J. Schwartz, Linear Operators Part I, Interscience Publishers, New York, 1958.Google Scholar
  12. 12.
    E. Y. Emel’yanov, U. Kohler, F. Räbiger, M. P. H Wolff, Stability and almost periodicity of asymptotically dominated semigroups of positive operators, 1998, to appear in Proc. Amer. Math. Soc. Google Scholar
  13. 13.
    P. Enflo, J. Lindenstrauss, G. Pisier, On the “three space Problem” Math. Scand. 36(1975), 199–210.MathSciNetzbMATHGoogle Scholar
  14. 14.
    G. Greiner, Zur Perron-Frobenius Theorie stark stetiger Halbgruppen, Math. Z 177(1981), 401–423.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    U. Groh, Uniformly ergodic theorems for identity preserving Schwarz maps on W*-algebras, J. Operator Theory 11(1984), 395–402.MathSciNetzbMATHGoogle Scholar
  16. 16.
    S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313(1980), 72–104.MathSciNetzbMATHGoogle Scholar
  17. 17.
    S. Heinrich, C. W. Henson, L. C. Moore, A note on elementary equivalence of C(K) spaces, J. Symbolic Logic 52(1987), 368–373.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    C. W. Henson, L. C. Moore, Nonstandard Analysis and the theory of Banach spaces, in: Nonstandard Analysis — Recent Developments, A. E. Hurd (ed.), Springer, Berlin, 1983, 27–112.CrossRefGoogle Scholar
  19. 19.
    E. Hewitt, K. H. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1963.zbMATHGoogle Scholar
  20. 20.
    E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, 1957.Google Scholar
  21. 21.
    T. Hinokuma, M. Ozawa, Conversion from nonstandard matrix algebras to standard factors of type II 1, Illinois Math. J. 37(1993), 1–13.MathSciNetzbMATHGoogle Scholar
  22. 22.
    A. E. Hurd, P. A. Loeb, An Introduction to Nonstandard Real Analysis, Academic Press, Orlando, 1985.zbMATHGoogle Scholar
  23. 23.
    R. C. James, Characterizations of reflexivity, Studia Math. 23(1963/64), 205–216MathSciNetGoogle Scholar
  24. 24.
    G. Janssen, Restricted ultraproducts of finite von Neumann algebras, in: Contributions to non-standard analysis, W. A. J. Luxemburg and A. Robinson (ed.), Studies in Logic and Found. Math. 69(1972), North Holland, Amsterdam, 101–114.CrossRefGoogle Scholar
  25. 25.
    T. Kato, Perturbation theory of operators Springer, Berlin, 1976.CrossRefGoogle Scholar
  26. 26.
    A. Krupa, On various generalizations of the notion of an F-power to the case of unbounded operators, Bull. Pol. Acad. Sci. Math. 38(1990), 159–166.MathSciNetzbMATHGoogle Scholar
  27. 27.
    H. E. Lacey, The isometric theory of classical Banach spaces Springer, New York, Heidelberg, 1974.zbMATHCrossRefGoogle Scholar
  28. 28.
    W. A. J. Luxemburg, A general theory of monads, in: Applications of Model Theory to Algebra, Analysis, and Probability, W. A. J. Luxemburg (ed.), Holt, Rinehart, and Winston, New York, 1969, 18–86.Google Scholar
  29. 29.
    —, Near-standard compact internal linear operators, in: Developments in nonstandard mathematics, N. J. Cutland et al. (eds.), Pitman Res. Notes Math. Ser. 336, London, 1995, 91–98Google Scholar
  30. 30.
    P. Meyer-Nieberg, Banach lattices, Springer, New York, Heidelberg, 1991.zbMATHCrossRefGoogle Scholar
  31. 31.
    G. Mittelmeyer, M. P. H. Wolff, Über den Absolutbetrag auf komplexen Vektorverbänden, Math. Z. 137(1974), 87–92.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, Boston, San Diego, 1990.Google Scholar
  33. 33.
    R. Nagel (ed.), One-parameter semigroups of positive operators, Lecture Notes in Math. 1184, Springer, Berlin, 1986.zbMATHGoogle Scholar
  34. 34.
    H. J. Reinhardt, Analysis of approximation methods for differential and integral equations, Springer, Berlin, 1985.zbMATHCrossRefGoogle Scholar
  35. 35.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983.zbMATHCrossRefGoogle Scholar
  36. 36.
    F. Räbiger, Wolff, M. P. H., Superstable semigroups of operators, Indag. Mathem., N.S. 6(1995), 481–494.zbMATHCrossRefGoogle Scholar
  37. 37.
    F. Räbiger, M. P. H. Wolff, Spectral and asymptotic properties of dominated operators, J. Austral. Math. Soc. (Series A) 63(1997), 16–31.zbMATHCrossRefGoogle Scholar
  38. 38.
    F. Räbiger, M. P. H. Wolff, On the approximation of positive operators and the behavious of the spectra of the approximants, Integral equ. oper. theory 28(1997), 72–86.zbMATHCrossRefGoogle Scholar
  39. 39.
    F. Räbiger, M. P. H. Wolff, Spectral and asymptotic properties of resolvent-dominated operators, submitted to J. Austral Math. Soc., 1998.Google Scholar
  40. 40.
    C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.zbMATHGoogle Scholar
  41. 41.
    A. Robert, Functional analysis and NSA, in: Developments in nonstandard mathematics, N. J. Cutland et al. (eds.), Pitman Res. Notes Math. Ser. 336, London, 1995, 73–90.Google Scholar
  42. 42.
    B. N. Sadovskii, Limit-compact and condensing operators, Uspehi Math. Nauk 27(1972), 81–146.MathSciNetGoogle Scholar
  43. 43.
    S. Sakai, C*-Algebras and W*-Algebras, Springer, Berlin, 1971.CrossRefGoogle Scholar
  44. 44.
    H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974.zbMATHCrossRefGoogle Scholar
  45. 45.
    A. Schepp, M. P. H. Wolff, Semicompact operators, Indag. Mathem. New Ser. 1(1990), 115–125.CrossRefGoogle Scholar
  46. 46.
    B. Sims, “Ultra”-techniques in Banach Space Theory, Queen’s papers in pure and applied mathematics 60, Queen’s Univ., Kingston, Ontario, 1982.zbMATHGoogle Scholar
  47. 47.
    K. D. Stroyan, W. A. J. Luxemburg, Introduction to the Theory of Infinitesimals, Academic Press, New York, 1976.zbMATHGoogle Scholar
  48. 48.
    Yeneng Sun, A Banach space in which a ball is contained in the range of some countable additive measure is superreflexive, Canad. Math. Bull. 33(1990), 45–49.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    M. Takesaki, Theory of Operator Algebras, Springer, Berlin, 1978.Google Scholar
  50. 50.
    L. N. Trefethen, Pseudospectra of matrices, in: Numerical Analysis, Proc. of the 14th Dundee Conference 1991, D. F. Griffiths (ed), Pitman, London, 1993, 234–264Google Scholar
  51. 51.
    G. Vainikko, Funktionalanalysis der Diskretisierungsmethoden, Teubner, Leipzig, 1976.zbMATHGoogle Scholar
  52. 52.
    R. Werner, M. P. H. Wolff, Classical mechanics as quantum mechanics with infinitesimal h, Physics Letters, Ser. A 202(1995), 155–159.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    M. P. H Wolff, R. Honegger, On the algebra of fluctuation operators of a quantum meanfield system, Quantum Probability Rel. Top. IX(1994), 401–410.Google Scholar
  54. 54.
    M. P. H Wolff, R. Honegger, Spectral theory of group representations and their nonstandard hull, IsraelJ. Math. 48(1984), 205–224zbMATHCrossRefGoogle Scholar
  55. 55.
    —, An application of spectral calculus to the problem of saturation in approximation theory, Note di Matematica XII(1992), 291–300.MathSciNetGoogle Scholar
  56. 56.
    —, A nonstandard analysis approach to the theory of quantum meanfield systems, in: Advances in Analysis, Probability and Mathematical Physics — Contributions of Nonstandard Analysis, S. Albeverio, W. A. J. Luxemburg and M. P. H. Wolff (eds.), Kluwer Acad. Publ, Dordrecht, 1995, 228–246.Google Scholar
  57. 57.
    —, An introduction to nonstandard functional analysis, in: Nonstandard Analysis-Theory and Applications, L. O. Arkeryd, N. J. Cutland and C. W. Henson (eds.), Kluwer Acad. Publ. Dordrecht, 1997, 121–151.Google Scholar
  58. 58.
    —, On the approximation of operators and the convergence of the spectra of the approximants, Operator Theory: Adv. and Apl. 13(1998), 279–283.MathSciNetGoogle Scholar
  59. 59.
    —, Approximation of unbounded operators and the convergence of the spectra of the approximants, 1999, submitted to IMA J. Num. Anal. Google Scholar
  60. 60.
    K. Yosida, Functional Analysis, Springer, Berlin, 2nd. ed., 1968.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Manfred P. H. Wolff
    • 1
  1. 1.Mathematische Fakultät der Universität TübingenTübingenGermany

Personalised recommendations