Skip to main content

Biological processes in running waters and their implications for the assessment of ecological integrity

  • Conference paper
Assessing the Ecological Integrity of Running Waters

Part of the book series: Developments in Hydrobiology ((DIHY,volume 149))

Abstract

Although biomonitoring approaches are being increasingly used in the measurement of stream and river health, critical assumptions about the nature of biological populations and communities that underpin them are often ignored. Many approaches based on pattern detection in plant and animal communities assume high temporal persistence in the absence of anthropogenic disturbances. However, this has been rarely tested with long-term data sets and there is evidence that this assumption is not true in some river systems. Biological processes, such as predation and recruitment, can account for considerable spatial and temporal variation in the structure of some stream communities. These processes may prevent the development of robust predictive models or indices based on pattern detection. Measurements of population or community attributes also are often used to infer ecosystem processes, yet the link between pattern and process has rarely been demonstrated. Many goals of river management relate to the maintenance of natural ecological processes and ecosystem function; direct measurement of these processes is, however, often neglected in assessment programs. Such measures are often sensitive to causal factors that are known to affect river health and it is possible to develop simple but powerful predictive models. Perhaps more importantly, should an impact to be detected, strategies for remediation are more obvious as the causal processes are generally better known. The ultimate success of biomonitoring approaches depends on how well we understand the biophysical processes that influence the structure and dynamics of stream and river systems, and the way they function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, J. D., 1983. Predator-prey relationships in streams. In: Barnes, J. R. & G. W. Minshall (eds), Stream Ecology: Application and Testing of General Ecological Theory Plenum Press, New York: 191-229.

    Google Scholar 

  • Bott, T. L., J. J. Brock, C. S. Dunn, R. J. Naiman, R. W. Ovink & R. C. Peterson, 1985. Benthic community metabolism in four temperate stream systems: an inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123: 3–45.

    Article  Google Scholar 

  • Bunn, S. E., 1995. Biological monitoring of water quality in Australian: workshop summary and future directions. Aust. J. Ecol. 20: 220–227.

    Article  Google Scholar 

  • Bunn, S. E. & P. M. Davies, 1990. Why is the stream fauna of southwestern Australia so impoverished? Hydrobiologia 194: 169–176.

    Article  Google Scholar 

  • Bunn, S. E. & J. M. Hughes, 1997. Dispersal and recruitment in streams: Evidence from genetic studies. J. N. am. Benthol. Soc. 16: 338–346.

    Article  Google Scholar 

  • Bunn, S. E., D. H. Edward & N. R. Loneragan, 1986. Spatia and temporal variation in the macroinvertebrate fauna of streams; of the northern jarrah forest, Western Australia: community structure. Freshwat. Biol. 16: 67–92.

    Article  Google Scholar 

  • Bunn, S. E., P. M. Davies, D. M. Kellaway & I. Prosser, 1998. Influence of invasive macrophytes on channel morphology and hydrology in an open tropical lowland stream, and potential control by riparian shading. Freshwat. Biol. 39: 171–178.

    Article  Google Scholar 

  • Bunn, S. E., P. M. Davies & T. D Mosisch, 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwat. Biol. 41: 333–345.

    Article  Google Scholar 

  • Chessman, B. C., 1995. Rapid assessment of rivers using macroinvertebrates: a procedure based on habitat-specific sarrpling, family level identification and a biotic index. Aust. J. Ecol. 20: 122–129.

    Article  Google Scholar 

  • Commonwealth of Australia, 1996. National Principles for the Provision of Water for Ecosystems. Occasional paper SWR No 3, Agriculture and Resource Management Council of Austral a and New Zealand and Australian and New Zealand Environment and Conservation Council. ISBN 0 7310 2382 X.

    Google Scholar 

  • Cooper, S. D., S. J. Walde & B. L. Peckarsky, 1990. Prey execange rates and the impact of predators on prey populations in streams. Ecology 71: 1503–1514.

    Article  Google Scholar 

  • Council of Australian Governments, 1992. National Strategy for Ecologically Sustainable Development. Australian Government Printing Service, Canberra.

    Google Scholar 

  • Cushing, C. E. & W. L. Gaines, 1989. Thoughts on recolonization of endorheic cold desert spring-streams. J. N. am. Benthol. Soc. 8: 277–287.

    Article  Google Scholar 

  • Davies, P. M., 1994. Ecosystem ecology of upland streams of the northern jarrah forest, Western Australia. Unpublished Ph.D. Thesis, Department of Zoology, The University of Western Australia, 236 pp.

    Google Scholar 

  • Ebeling, A. W., S. J. Holbrook & R. J. Schmitt, 1990. Temporally concordant structure of a fish assemblage: bound or determined? Am. Nat. 135: 63–73.

    Article  Google Scholar 

  • Faith D. P., P. L. Dostine & C. L. Humphrey, 1995. Detection of mining impacts on aquatic macroinvertebrate communities: Results of a disturbance experiment and the design of a multivariate BACIP monitoring program at Coronation Hill. Northern Territory. Aust. J. Ecol. 20: 167–180.

    Article  Google Scholar 

  • Grossman, G. D., P. B. Moyle & J. O. Whitaker Jr., 1982. Stochasticity in structural and functional characteristics of an Indiana stream fish assemblage: a test of community theory. Am. Nat. 120: 423–454.

    Article  Google Scholar 

  • Hancock, M. A. & S. E. Bunn, 1997. Population dynamics and life history of Paractya australiensis Kemp, 1917 (Decapoda: Atyidae) in upland rainforest streams, southeast Queensland. Mar. Freshwat. Res. 48: 361–369.

    Article  Google Scholar 

  • Hildrew, A. G., 1992. Food webs and species interactions. In: Petts, G. & P. Calow (eds), The Rivers Handbook, Volume 1. Blackwell Science, London: 309–330.

    Google Scholar 

  • Hildrew, A. G. & C. R. Townsend, 1987. Organization in freshwater benthic communities. In: Gee, J. H. & P. S. Giller (eds), Organization of Communities: Past and Present, Symposia of the British Ecological Society. Blackwell Scientific. Oxford: 347–371.

    Google Scholar 

  • Hill, M. O., 1979. DECORANA — A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging. Ecology and Systematics, Cornell University, Ithaca, New York.

    Google Scholar 

  • Hughes, J. M., S. E. Bunn, D. Hurwood & M. Kingston, 1995. Genetic differentiation of populations of Paratya australiensis (Decapoda: Atyidae) in rainforest streams in south-east Queensland. J. N. am. Benthol. Soc. 14: 158–173.

    Article  CAS  Google Scholar 

  • Hughes, J. M., S. E. Bunn, D. A. Hurwood, S. Choy & R. Pearson, 1996. Genetic differentiation among populations of Caridina zebra (Decapoda: Atyidae) in tropical rainforest streams, northern Australia. Freshwat. Biol. 36: 289–296.

    Article  Google Scholar 

  • Huribert, S. H., 1997. Functional importance vs keystoneness: reformulating some questions in theoretical biocenology. Aust. J. Ecol. 22: 369–382.

    Article  Google Scholar 

  • Huryn, A. D. & J. B. Wallace, 1987. Local geomorphology as a determinant of macrofaunal production in a mountain stream. Ecology 68: 1932–1942.

    Article  Google Scholar 

  • Karr, J. R., 1991. Biological integrity: a long-neglected aspect of water resource management. Ecol. Appl. 1: 66–84.

    Article  Google Scholar 

  • Karr, J. R. & E. W. Chu, 2000. Sustaining living rivers. Hydrobiologia 422/423: 1–13.

    Article  CAS  Google Scholar 

  • Kay, W. R., M. J. Smith, A. M. Pinder, J. M. McRae, J. A. Davis & S. A. Halse, 1999. Patterns of distribution of macroinvertebrate families in rivers of north-western Australia. Freshwat. Biol. 41: 299–316.

    Article  Google Scholar 

  • Keast, A., 1981. Ecological Biogeography of Australia. Dr W. Junk Publishers, The Hague.

    Google Scholar 

  • Mackay, R. J., 1992. Colonization by lotic macroinvertebrates: a review of processes and patterns. Can. J. Fish. aquat. Sci. 49: 617–628.

    Article  Google Scholar 

  • Miller, M. C. & J. R. Stout, 1989. Variability of macroinvertebrate community composition in an arctic and subarctic stream. Hydrobiologia 172: 111–127.

    Article  Google Scholar 

  • Mosisch, T. D. & S. E. Bunn, 1997. Temporal patterns in stream epilithic algae in response to discharge regime. Aquat. Bot. 58: 181–193.

    Article  Google Scholar 

  • Moyle, P. B. & B. Vondracek, 1985. Persistence and structure of the fish assemblage in a small California stream. Ecology 66: 1–13.

    Article  Google Scholar 

  • Naiman, R. J., 1983. The annual pattern and spatial distribution of aquatic oxygen metabolism in boreal forest watersheds. Ecol. Monogr. 53: 73–94.

    Article  Google Scholar 

  • Norris, R. H. & K. R. Norris, 1995. The need for biological assessment of water quality: Australian perspective. Aust. J. Ecol. 20: 1–6.

    Article  Google Scholar 

  • Petts, G. E., 2000. A perspective on the abiotic processes sustaining the ecological integrity of running waters. Hydrobiologia 422/423: 15–27.

    Article  CAS  Google Scholar 

  • Power, M. E., 1990. Effects of fish in river food webs. Science 250: 811–814.

    Article  CAS  Google Scholar 

  • Power, M. E., W. J. Matthews & A. J. Stewart, 1985. Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology 66: 1448–1456.

    Article  Google Scholar 

  • Pringle, C. M., R. J. Naiman, G. Bretschko, J. R. Karr, M. W. Oswood, J. R. Webster, R. L. Welcomme & M. J. Winterbourn, 1988. Patch dynamics in lotic systems: the stream as a mosaic. J. N. am. Benthol. Soc. 7: 503–524.

    Article  Google Scholar 

  • Rapport, D. J., R. Costanza & A. J. McMichael, 1998. Assessing ecosystem health. Trends Ecol. Evol. 13: 397–402.

    Article  CAS  Google Scholar 

  • Resh, V. H., R. H. Norris & M. T. Barbour, 1995. Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Aust. J. Ecol. 20: 108–121.

    Article  Google Scholar 

  • Sale, P. F., 1990. Recruitment of marine species: is the bandwagon rolling in the right direction? Trends Ecol. Evol. 5: 25–27.

    Article  CAS  Google Scholar 

  • Schaeffer, D. J., E. E. Henricks & H. W. Kerster, 1988. Ecosystem health: 1. Measuring ecosystem health. Envir. Manage. 12: 445–455.

    Article  Google Scholar 

  • Schofield, N. J. & P. E. Davies, 1996. Measuring the health of our rivers. Water (May/June): 39-43.

    Google Scholar 

  • Smith, M. J., W. R. Kay, D. H. D. Edward, P. J. Papas, K. S. J. Richardson, J. C. Simpson, A. M. Pinder, D. J. Cale, P. H. J. Horwitz, J. A. Davis, F. H. Yung, R. H. Norris & S. A. Halse, 1999. AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwat. Biol. 41: 269–282.

    Article  Google Scholar 

  • Sousa, W. P., 1979. Disturbance in marine intertidal boulder fields; the non equilibrium maintenance of species diversity. Ecology 60: 1225–1239.

    Article  Google Scholar 

  • Storey, A. W., S. E. Bunn, P. M. Davies & D. H. Edward, 1990. Classification of the macroinvertebrate fauna of two river systems in south-western Australia in relation to physical and chemical parameters. Regul. Riv. 5: 217–232.

    Article  Google Scholar 

  • Surber, E. W., 1970. Procedure in taking stream bottom samples with the stream square foot bottom sampler. Proceedings of the 23rd Annual Conference of South East Game and Fisheries Commission 23: 587–591.

    Google Scholar 

  • Suter, G. W., 1993. A critique of ecosystem health concepts and indexes. Envir. Toxicol. Chem. 12: 1533–1539.

    Article  Google Scholar 

  • Townsend, C. R., 1989. The patch dynamics concept of stream community ecology. J. N. am. Benthol. Soc. 8: 36–50.

    Article  Google Scholar 

  • Underwood, A. J. & P. G. Fairweather, 1989. Supply-side ecology and benthic marine assemblages. Trends Ecol. Evol. 4: 16–20.

    Article  CAS  Google Scholar 

  • Wallace, J. B., 1990. Recovery of lotic macroinvertebrate communities from disturbance. Envir. Manage. 15: 605–620.

    Article  Google Scholar 

  • Wallace, J. B., J. W. Grubaugh & M. R. Whiles, 1996. Biotic indices and stream ecosystem processes: results from an experimental study. Ecol. Appl. 6: 140–151.

    Article  Google Scholar 

  • Wicklum, D. & R. W. Davies, 1995. Ecosystem health and integrity. Can. J. Bot. 73: 997–1000.

    Article  Google Scholar 

  • Wright, J. F., 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Aust. J. Ecol. 20: 181–197.

    Article  Google Scholar 

  • Wright, J. F., D. Moss, P. D. Armitage & M. T. Furse, 1984. A preliminary classification of running water sites in Great Britain based on macroinvertebrate species and the prediction of community type using environmental data. Freshwat. Biol. 14: 221–256.

    Article  Google Scholar 

  • Zaret, T. M., 1982. The stability/diversity controversy: I test of hypotheses. Ecology 63: 721–731.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Jungwirth S. Muhar S. Schmutz

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bunn, S.E., Davies, P.M. (2000). Biological processes in running waters and their implications for the assessment of ecological integrity. In: Jungwirth, M., Muhar, S., Schmutz, S. (eds) Assessing the Ecological Integrity of Running Waters. Developments in Hydrobiology, vol 149. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4164-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4164-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5814-8

  • Online ISBN: 978-94-011-4164-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics