Skip to main content

The river-scaling concept (RSC): a basis for ecological assessments

  • Conference paper
Assessing the Ecological Integrity of Running Waters

Part of the book series: Developments in Hydrobiology ((DIHY,volume 149))

Abstract

The aim of this paper is to discuss the river-scaling concept (RSC) as a basis for ecological assessments. Since river morphology is a result of two major boundary conditions — transport of water and sediments — the size of project areas and the analysis procedure were found to be critical. Restricting the assessment of abiotic and biotic river components and its variability to a certain scale neglects the fact that ecological integrity depends on the process scale of boundary conditions. A newly developed two-step procedure for assessing the ecological integrity at various temporal and spatial scales is presented. During the so-called downscaling phase, abiotic and biotic components are analysed at the regional-continental (only for special questions), catchment-wide, sectional, local, and point scales. Catchment-wide analyses are based on digital elevation models (DEMs) and geographic information systems (GISs). Mass balance analysis, the application of fractals, and self-similarity studies for channel developments gain increasing importance. The application of linear and non-linear theories allows analytical tools to be derived to describe abiotic components like morphodynamics at sectional and local scales. Point scale investigations are based on deterministic models, where input data can be measured directly in nature. As the scale varies dramatically, the results obtained from various analysis tools are significantly different but interdependent. Biotic analysis are also performed at the same scales, so that the interrelations between morphodynamics and habitat quality can be derived at the end of this first phase. In a second phase an upscaling integrates and aggregates the results from the first step in order to yield overall conclusions on ecological integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, J. D., D. L. Erickson & J. Fay, 1997. The influence of catchment land use on stream integrity across multiple spatial scales Freshwat. Biol. 37: 149–161.

    Google Scholar 

  • Beeby, A. (ed.), 1993. Applying Ecology. Chapman & Hal, London, 441 pp.

    Google Scholar 

  • Blöschl, G., 1996. Scale and scaling in hydrology. Wiener Mitteilungen 132.

    Google Scholar 

  • Bult, T. P., R. L. Haedrich & D. C. Schneider, 1998. New technique describing spacial scaling and habitat selection in riverine habitats. Regul. Rivers: Res. Mgmt. 14: 107–118.

    Article  Google Scholar 

  • Chatfield, C., 1980. The Analysis of Time Series: an Introduction, 4th edn. Chapman and Hall, London, 241 pp.

    Google Scholar 

  • Cutler, C. D., 1993. A review of theory and estimation of fractal dimension. Tech. Rep. Ser. STAT-93-06. Dept. of Stat, and Act. Science, Univ. of Waterloo, Ontario, 107 pp.

    Google Scholar 

  • Dayton, P. D. & M. J. Tegner, 1984. The importance of scale in community ecology: a kelp forest example with terrestrical analogs. In Price, P. W., CM. Slobodchikoff & W. S. Gaud (eds), A New Ecology: Novel Approaches to Interactive Systems. John Wiley & Sons, New York: 457–481.

    Google Scholar 

  • Downes, B. J., P. S. Lake & E. S. G. Schreiber, 1993. Spatial variation in the distribution of stream invertebrates: implications of patchiness for models of community organization. Freshwat. Biol. 30: 119–132.

    Article  Google Scholar 

  • Fisher, S. G., 1994. Pattern, process and scale in freshwater systems: some unifying thoughts. In Giller, P. S., A. G. Hildrew & D. G. Raffaelli (eds), Aquatic Ecology: Scale. Pattern and Process. Blackwell, Oxford: 575–591.

    Google Scholar 

  • Frisell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierachical framework for stream classification: viewing streams in a watershed context, Envir. Mgmt. 10: 199–214.

    Article  Google Scholar 

  • Getis, A. & J. Franklin, 1987. Second-order neighborhood analysis of mapped point patterns. Ecology 68: 473–477.

    Article  Google Scholar 

  • Giller P. S., A. G. Hildrew & D. G. Raffaelli (eds), 1994. Aquatic Ecology: Scale, Pattern and Process. Blackwell, Oxford, 649 pp.

    Google Scholar 

  • Greig-Smith, P., 1983. Quantitative Plant Ecology. Blackwell Scientific Publications, Oxford, 359 pp.

    Google Scholar 

  • Habersack, H., 1998. Numerical sediment transport models-theoretical and practical aspects, IAHS Publ. 249: 299–308.

    Google Scholar 

  • Habersack, H., 1997. Catchment-wide, sectional and local aspects in sediment transport modelling and monitoring. J. Sediment Res. 12: 120–130.

    Google Scholar 

  • Habersack, H. & H. P. Nachtnebel, 1995. Short term effects of local river restoration on morphology, flow field, substrate and biota, Regul. Riv. Res. Mgmt. 10: 291–301.

    Article  Google Scholar 

  • Habersack, H. & H. P. Nachtnebel, 1997. Changes in sediment transport and river engineering concepts, case study of the river Drau in Austria, UNESCO — IHP-V/Tech. Doc. Hydrol. 10: 277–286.

    Google Scholar 

  • Hey, R. D., 1988. Mathematical models of channel morphology. In Anderson, M. G. (ed.), Modelling Geomorphological Systems. Wiley, Chichester: 99–125.

    Google Scholar 

  • Holling, C. S., 1992. Cross-scale morphology, geometry and dynamics of ecosystems. Ecol. Monogr. 62: 447–502.

    Article  Google Scholar 

  • Home, J. K. & D.C. Schneider, 1995. Spatial variance in ecology. Oikos 74: 18–26.

    Article  Google Scholar 

  • Horton, R. E., 1945. Erosional development of streams and their drainage basin: hydrophysical approach to quantitative morphology. Geol. Soc. am. Bull. 38: 275–370.

    Article  Google Scholar 

  • Huston, M. A., 1994. Biological Diversity, the Coexistence of Species on Changing Landscapes. Cambridge University Press, Cambridge, 681 pp.

    Google Scholar 

  • Jungwirth, M., 1998. River continuum and fish migration. In Jungwirth, M., S. Schmutz & S. Weiss (ed.), Fish Migration and Bypass Channels. Fishing News Books, Blackwell Science, Oxford: 19–32.

    Google Scholar 

  • Knighton, D., 1984. Fluvial Forms and Processes. Edward Arnold, London, 218 pp.

    Google Scholar 

  • Leopold, L. B. & T. Maddock, 1953. The hydraulic geometry of stream channels and some physiographic implications. US Geol. Surv. Prof. Pap. 252: 57 pp.

    Google Scholar 

  • Levin, S. A., 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Article  Google Scholar 

  • Lewis, C. A., N. P. Lester, A. D. Bradshaw, J. E. Fitzgibbon, K. Fuller, L. Hakanson & C Richards, 1996. Consideration of scale in habitat conservation and restoration. Can. J. Fish, aquat. Sci. 53 (suppl. 1): 440–445.

    Article  Google Scholar 

  • Lloyd, M., 1967. Mean crowding. J. anim. Ecol. 36: 1–30.

    Article  Google Scholar 

  • Lomolino, M. V., 1989. Interpretations and comparisons of constants in the species-area relationship: an additional caution. Am. Nat. 133: 277–280.

    Article  Google Scholar 

  • Mackas, D. L., H. L. Denman & M. R. Abbott, 1985. Plankton patchiness: biology in the physical vernacular. Bull. mar. Sci. 37: 652–674.

    Google Scholar 

  • Mandelbrot, B. B., 1977. Fractals: Form, Chance and Dimension. Freeman, San Francisco, 365 pp.

    Google Scholar 

  • Menge, B. A. & A. M. Olson, 1990. Role of scale and environment factors in regulation of community structure. Trends Ecol. Evol. 5: 52–57.

    Article  CAS  Google Scholar 

  • Michor, K., A. Zedrosser & M. Unterlercher, 1993. Mammal investigations at the river Drau, special report of the interdisciplinary project Gewässerbetreuungskonzept Obere Drau. Lienz, Austria.

    Google Scholar 

  • Montgomery, D. R. & E. Foufoula-Georgiou. 1993. Channel network source representation using digital elevation models. Wat. Resour. Res. 29: 3925–3934.

    Article  Google Scholar 

  • Morisita, M., 1959. Measuring of the dispersion of individuals and analysis of the distributional patterns. Mem. Fac. Sci., Kyushu Univ. 2: 215–235.

    Google Scholar 

  • Muotka, T. & A. Penttinen, 1994. Detecting small-scale spatial patterns in lotic predator-prey relationship: statistical methods and acase study. Can. J. Fish. aquat. Sci. 51: 2210–2218.

    Article  Google Scholar 

  • Naiman, A. J., D. G. Lonzarich, T. J. Beechie & S.C Ralph, 1992. General principles of classification and the assessment of conservation potential in rivers. In Boon, Calow, Petts, G. E. (eds), River Conservation and Management. Wiley & Sons, Chichester, Sussex: 93–123.

    Google Scholar 

  • Platt, T. & K. L. Denman, 1975. Spectral analysis in ecology. Ann. Rev. Ecol. Syst. 6: 189–210.

    Article  Google Scholar 

  • Poizat, G. & D. Pont, 1996. Multi-scale approach to species-habitat relationship — juvenile fish in a large river section. Freshwat. Biol. 36: 611–622.

    Article  Google Scholar 

  • Raffaelli, D. G., A. G. Hildrew & P. S. Giller, 1994. Scale, pattern and process in aquatic systems: concluding remarks. In Giller, P. S., A. G. Hildrew & D. G. Raffaelli (eds). Aquatic Ecology: Scale, Pattern and Process. Blackwell, Oxford: 601–606.

    Google Scholar 

  • Richards, C., L. B. Johnson & G. E. Host, 1996. Landscape-scale influences on stream habitats and biota. Can. J. Fish, aquat. Sci. 53 (suppl. 1): 295–311.

    Article  Google Scholar 

  • Richards, K., 1982. Rivers — Form and Process in Alluvial Channels. Methuen, London, 361 pp.

    Google Scholar 

  • Rodríguez-Iturbe, I., A. Rinaldo, R. Rigon, R.L Bras, Marani & E. Ijjász-Vásquez. 1992. Energy dissipation, runoff production and the 3-dimensional structure of river basins. Wat. Resour. Res. 28: 1095–1103.

    Google Scholar 

  • Rossi, R. E., D. J. Mulla, A. G. Journel & E. H. Franz, 1992. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 62: 277–314.

    Article  Google Scholar 

  • Schneider, D. C., 1994. Quantitative Ecology: Spacial and Temporal Scaling. Academic Press. CA, 395 pp.

    Google Scholar 

  • Sokal, R. R. & N. L. Oden, 1978. Spatial autocorrelation in biology 1. Methodology. Biol. J. linn. Soc. 10: 199–228.

    Article  Google Scholar 

  • Stommel, H., 1963. The varieties of oceanographie experience. Science 139: 572–576.

    Article  CAS  Google Scholar 

  • Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Trans. am. Geophys. Union 38: 913–920.

    Article  Google Scholar 

  • Sugihara, G. & R. M. May, 1990. Application of fractals in ecology. Trends Res. Ecol. Evol. 5: 79–87.

    Article  CAS  Google Scholar 

  • Syms, C., 1995. Multi-scale analysis of habitat association in a guild of blennioid fishes. Mar. Ecol. Proc Ser. 125: 31–43.

    Article  Google Scholar 

  • Tarboton, D. G., R. L. Bras & I. Rodriguez-Iturbe, 1989. Scaling and elevation in river networks. Wat. Resour. Res. 25: 2037–2051.

    Article  Google Scholar 

  • Taylor, L. R., 1961. Aggregation, variance and the mean. Nature 189: 732–735.

    Article  Google Scholar 

  • Voss, R. F., 1985. Random fractals: characterisation and measurement. In Pynn, R. & A. Skjeltorp (eds), Scaling Phenomena in Disordered Systems. Plenum Press, New York: 1-11.

    Google Scholar 

  • Wiens, J. A., 1989. The Ecology of Bird Communities. Cambridge University Press, Cambridge, 276 pp.

    Book  Google Scholar 

  • Williamson, M. H. & J. H. Lawton, 1991. Fractal geometry of habitats. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure. Chapman and Hall, London: 69–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Jungwirth S. Muhar S. Schmutz

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Habersack, H.M. (2000). The river-scaling concept (RSC): a basis for ecological assessments. In: Jungwirth, M., Muhar, S., Schmutz, S. (eds) Assessing the Ecological Integrity of Running Waters. Developments in Hydrobiology, vol 149. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4164-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4164-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5814-8

  • Online ISBN: 978-94-011-4164-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics