Skip to main content

EMAP-Surface Waters: a multiassemblage, probability survey of ecological integrity in the U.S.A.

  • Conference paper
Assessing the Ecological Integrity of Running Waters

Part of the book series: Developments in Hydrobiology ((DIHY,volume 149))

Abstract

Data analyzed at national, multistate or state scales often reveal more serious deterioration of various biological assemblages than that suspected from site specific studies simply because the impacts are observed regionally rather than locally. Unfortunately many regional assessments are based on data collected with differing sampling designs and methods, making their representativeness, accuracy and precision questionable. In 1989, the United States Environmental Protection Agency (USEPA) began EMAP-Surface Waters (EMAP-SW). a program for developing methods to monitor and assess status and trends in the nation’s lakes and rivers in a statistically and ecologically rigorous manner. EMAP-SW has now conducted regional multistate pilots in streams and rivers throughout the U.S.A. in collaboration with State agencies, universities and EPA regional offices. We discuss EMAP’s conceptual design, which focuses on biological integrity through use of multiple biological assemblages and includes physical and chemical habitat and landscape characteristics. When coupled with appropriate biological indicators, a probability-based design enabled us to provide accurate, precise and unbiased assessments of biological conditions, along with quantitative estimates of sampling uncertainty. Regional EMAP-SW surveys indicated the importance of assessing multiple biological assemblages because each assemblage was differentially sensitive to different Stressors and at different spatial scales. Synthesizing multiple metrics from multiple assemblages allowed us to detect the effects of multiple anthropogenic disturbances. We also illustrate the value of using historical reconstruction and paleolimnological data for determining reference conditions where disturbance is extensive. We conclude that an EMAP approach to sampling design and indicators (recognizing natural ecoregional differences) has distinct advantages for monitoring and assessments that may be applicable to European Communities seeking to assess the ecological integrity of waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, J. D. & A. S. Flecker, 1993. Biodiversity conservation in running waters. BioScience 43: 32–43.

    Article  Google Scholar 

  • Allen, A. P., T. R. Whittier, P. R. Kaufmann, D. P. Larsen, R. J. O’Connor, R. M. Hughes, R. S. Stemberger, S. S. Dixit, R. O. Brinkhurst, A. T. Herlihy & S. G. Paulsen, 1999a. Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use. Can. J. Fish. aquat. Sci. 56: 2029–2040.

    Article  Google Scholar 

  • Allen, A. P., T. R. Whittier, P. R. Kaufmann, D. P. Larsen, R. J. O’Connor, R. M. Hughes, R. S. Stemberger, S. S. Dixit, R. O. Brinkhurst, A. T. Herlihy & S. G. Paulsen, 1999b. Concordance of taxonomic richness patterns across multiple assemblages in lakes of the northeastern U. S.A. Can. J. Fish. aquat. Sci. 56: 739–747.

    Article  Google Scholar 

  • Averill, D. K. & D. V. Peck (eds), 1999. Field Operations and Methods for Measuring the Ecological Condition of Non-wadeable Rivers in Oregon. U. S. Environmental Protection Agency, Corvallis, OR: 219 pp.

    Google Scholar 

  • Baker, J. R., D. V. Peck & D. W. Sutton, 1997. Field operations manual for lakes, EPA/620/R-97/001. U. S. Environmental Protection Agency, Corvallis, OR: 241 pp.

    Google Scholar 

  • Baker, L. A., A. T. Herlihy, P. R. Kaufmann & J. M. Eilers, 1991. Acidic lakes and streams in the United States: the role of acidic deposition. Science 252: 1151–1154.

    Article  CAS  Google Scholar 

  • Bryce, S. A., D. P. Larsen, R. M. Hughes & P. R. Kaufmann, 1999. Assessing relative risks to aquatic ecosystems: a mid-Appalachian case study. J. Am. Wat. Res. Assoc. 35: 23–36.

    Article  Google Scholar 

  • Chovanec, A., V. Koller-Kreimel, O. Moog & S. Weiss, 1995. Assessment of the ecological integrity of running waters: the Austrian approach. Proceedings of the International Workshop on Assessment and Classification of Rivers, Düsseldorf, Germany.

    Google Scholar 

  • Commission of the European Communities, 1994. Proposal for a council directive on the ecological quality of water, COM (93) 680 final, 15.06.1994, Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Croonquist, M. J., & R. P. Brooks, 1991. Use of avian and mammalian guilds as indicators of cumulative impacts in riparian-wetland areas. Environ. Manage. 15: 701–714.

    Article  Google Scholar 

  • Dixit, S. S. & J. P. Smol, 1994. Diatoms as indicators in the Environmental Monitoring and Assessment Program-Surface Waters (EMAP-SW). Environ. Monitor. Assess. 31: 275–306.

    CAS  Google Scholar 

  • Dixit, S. S., J. P. Smol, J. C. Kingston & D. F. Charles, 1992. Diatoms: powerful indicators of environmental change. Environ. Sci. Technol. 26: 22–33.

    Article  CAS  Google Scholar 

  • Dixit, S. S., J. P. Smol, D. F. Charles, R. M. Hughes, S. G. Paulsen & G. B. Collins, 1999. Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can. J. Fish. aquat. Sci. 56: 131–152.

    Google Scholar 

  • Eilers, J. M., D. F. Brakke, D. H. Landers, and P. E. Kellar, 1988. Characteristics of lakes in mountainous areas of the western United States. Proceed. Internat. Assoc. Theo. Appl. Limnol. 23: 144–

    Google Scholar 

  • EMAP (Environmental Monitoring and Assessment Program), 1997. Research Plan 1997. U. S. Environmental Protection Agency. Washington, DC: 138 pp.

    Google Scholar 

  • Fausch, K. D., J. R. Karr & P. R. Yant, 1984. Regional application of an index of biotic integrity based on stream fish communities. Trans. Am. Fish. Soc. 113: 39–55.

    Article  Google Scholar 

  • Fausch, K. D., J. Lyons, J. R. Kan & P. L. Angermeier, 1990. Fish communities as indicators of environmental degradation. In Adams, S. M. (ed.), Biological Indicators of Stress in Fish. American Fisheries Society Symposium. Bethesda, MD 8: 123–144.

    Google Scholar 

  • Harding, J. S., E. F. Benfield, P. V. Bolstad, G. S. Helfman & E. B. D. Jones III, 1998. Stream biodiversity: the ghost of land use past. Proc. natn. Acad. Sci. U. S. A. 95: 14843–14847.

    Article  CAS  Google Scholar 

  • Hren, J., C. J. Oblinger Childress, J. M. Norris, T. H. Chaney & D. N. Meyers, 1990. Regional water quality: evaluation of data for assessing conditions and trends. Envir. Sci. Technol. 24: 1122–1127.

    Article  Google Scholar 

  • Hughes, R. M., 1995. Defining acceptable biological status by comparing with reference conditions. In Davis, W. S. & T. P. Simon (eds), Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL: 31–47.

    Google Scholar 

  • Hughes, R. M., 1997. Do we need institutional change? In Stouder, D. J., P. A. Bisson & R. J. Naiman (eds), Pacific Salmon & Their Ecosystems: Status and Future Options. Chapman & Hall, New York: 559–568.

    Chapter  Google Scholar 

  • Hughes, R. M., 1999. Conservation of natural resources. In Alexander, D. E. & R. W. Fairbridge (eds), Encyclopedia of Environmental Science. Kluwer Academic Publishers. Dordrecht. NL: 90–95.

    Google Scholar 

  • Hughes, R. M. & R. F. Noss, 1992. Biological diversity and biological integrity: current concerns for lakes and streams. Fisheries 17(3): 11–19.

    Article  Google Scholar 

  • Hughes, R. M., P. R. Kaufmann, A. T. Herlihy, T. M. Kincaid, L. Reynolds & D. P. Larsen, 1998. A process for developing and evaluating indices of fish assemblage integrity. Can. J. Fish. aquat. Sci. 55: 1618–1631.

    Article  Google Scholar 

  • Jacobs, S. E. & C. X. Cooney, 1995. Improvement of methods used to estimate the spawning escapement of Oregon coastal natural coho salmon. Oregon Department of Fish & Wildlife. Portland, OR: 24 pp.

    Google Scholar 

  • Judy, R. D. Jr. P. N. Seeley, T. M. Murray, S. C. Svirsky, M. R. Whitworth & L. S. Ischinger, 1984. 1982 national fisheries survey. Volume I technical report: initial findings. U. S. Fish and Wildlife Service, Washington, DC: 140 pp.

    Google Scholar 

  • Karr, J. R., 1991. Biological integrity: a long-neglected aspect of water resource management. Ecol. Appl. 1: 66–84.

    Article  Google Scholar 

  • Karr, J. R., R. C. Heidinger, and E. H. Helmer, 1985. Effects of chlorine and ammonia from wastewater treatment facilities on biotic integrity. J. Wat. Pollut. Cont. Fed. 57: 912–915.

    CAS  Google Scholar 

  • Kaufmann, P. R., A. T. Herlihy, M. E. Mitch, J. J. Messer, and W. S. Overton, 1991. Stream chemistry in the eastern United States: synoptic survey design, acid-base status and regional patterns. Wat. Res. Resear. 27: 611–627.

    Article  CAS  Google Scholar 

  • Landers, D. H., W. S. Overton, R. A. Linthurst & D. F. Brakke, 1988. Eastern lake survey regional estimates of lake chemistry. Envir. Sci. Technol. 22: 128–135.

    Article  CAS  Google Scholar 

  • Larsen, D. P., N. S. Urquhart & D. L. Kugler, 1995. Regional scale trend monitoring of indicators of trophic condition of lakes. Wat Res. Bull. 31: 117–140.

    Article  Google Scholar 

  • Lazorchak, J. M., D. J. Klemm & D. V. Peck, 1998. Field operations and methods for measuring the ecological condition of wade-able streams, EPA/620/R-94/004. U. S. Environmental Protection Agency, Cincinnati, OH: 270 pp.

    Google Scholar 

  • Marsh, G. P., 1885. The Earth as Modified by Human Action. Charles Scribner’s Sons, New York: 629 pp.

    Google Scholar 

  • Maxted, J. R., 1997. Biology, probability and the obvious. Human and Ecological Risk Assessment 3: 955–965.

    Article  Google Scholar 

  • Messer, J. J., R. A. Linthurst, & W. S. Overton, 1991. An EPA program for monitoring ecological status and trends. Envir. Monitor. Assess. 17: 67–78.

    Article  Google Scholar 

  • Miller, R. R., J. D. Williams & J. E. Williams, 1989. Extinctions of North American fishes during the past century. Fisheries 14(6): 22–38.

    Article  Google Scholar 

  • Moyle, P. B. & M. P. Marchetti, 1998. Applications of indices of biotic integrity to California streams and watersheds. In Simon, T. P. (ed.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. Lewis, Boca Raton, FL: 367-380.

    Google Scholar 

  • Muhar, S., M. Schwarz, S. Schmutz & M. Jungwirth, 2000. Identification of rivers with high and good habitat quality: methodological approach and applications for Austria. Hydrobiologia 422/423: 343–358.

    Article  Google Scholar 

  • Oberdorff, T., J. Guegan & B. Hugueny, 1995. Global scale patterns of fish species richness in rivers. Ecography 18: 345–352.

    Article  Google Scholar 

  • O’Connor, R. J., T. E. Walls & R. M. Hughes, 2000. Using multiple taxonomic groups to index the ecological condition of lakes. Environ. Monitor. Assess. 61: 207–228.

    Article  Google Scholar 

  • Olsen, A. R., D. L. Stevens Jr. & D. White, 1998. Application of global grids in environmental sampling. In Weisberg, S. (ed.), Computing Science and Statistics, volume 30. Interface Foundation of North America, Fairfax Station, VA: 279-284.

    Google Scholar 

  • Overton, W. S., D. White, and D. L. Stevens Jr., 1991. Design report for EMAP, the environmental monitoring and assessment program. EPA/600/3-91/053, U. S. Environmental Protection Agency, Washington, DC: 43 pp.

    Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann & A. T. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in mid-Atlantic Highlands streams. J. Phycol. 35: 460–468.

    Article  Google Scholar 

  • Paulsen, S. G. & R. A. Linthurst, 1993. Biological Monitoring in the Environmental Monitoring and Assessment Program. In Loeb, S. L. & A. Spacie (eds), Biological Monitoring of Aquatic Systems. Lewis, Boca Raton, FL: 297–322.

    Google Scholar 

  • Paulsen, S. G., D. P. Larsen, P. R. Kaufmann, T. R. Whittier, J. R. Baker, D. V. Peck, J. McGue, R. M. Hughes, D. McMullen, D. Stevens, J. L. Stoddard, J. Lazorchak, W. Kinney, A. R. Selle & R. Hjort, 1991. EMAP-Surface Waters monitoring and research strategy: fiscal year 1991. EPA/600/3-91/022, U. S. Environmental Protection Agency, Corvallis, OR: 184 pp.

    Google Scholar 

  • Paulsen, S. G., R. M. Hughes & D. P. Larsen, 1998. Critical elements in describing and understanding our nation’s aquatic resources. J. Am. Wat. Res. Assoc. 34: 995–1005.

    Article  CAS  Google Scholar 

  • PEER, 1999. Murky waters. Public Employees for Environmental Responsibility, Washington, DC: 44 pp.

    Google Scholar 

  • Petts, G. E., 1989. Historical analysis of fluvial hydrosystems. In Petts, G. E., H. Moller & A. L. Roux (eds), Historical Change of Large Alluvial Rivers: Western Europe. John Wiley & Sons, New York, NY: 1-17.

    Google Scholar 

  • Petts, G. E., H. Moller & A. L. Roux (eds), 1989. Historical Change of Large Alluvial Rivers: Western Europe. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Rathert, D., D. White, J. C. Sifneos & R. M. Hughes, 1999. Environmental correlates of species richness for native freshwater fish in Oregon, U. S. A.J. Biogeogr. 26: 257–273.

    Article  Google Scholar 

  • Raven, P. J., N. T. H. Holmes, F. H. Dawson, P. J. A. Fox, M. Evsr-ard, I. R. Fozzard & K. L. Rouen, 1998. River habitat quality: the physical character of rivers and streams in the U. K. ard Isle of Man. River Habitat Survey Report No. 2. Environment Agency., Bristol, England: 86 pp.

    Google Scholar 

  • Sahr, K., & D. White, 1998. Discrete global grid systems. In Weisberg, S. (ed.), Computing Science and Statistics, volume 30. Interface Foundation of North America, Fairfax Station, VA: 269-278.

    Google Scholar 

  • Schwaiger, K., J. Grath & A. Chovanec, 1994. Information needs for water quality: the Austrian context. In Advances in Water Quality Monitoring, Technical Reports in Hydrology & Water Resources No. 42. World Meteorological Organization, Geneva, Switzerland: 105-118.

    Google Scholar 

  • Science Advisory Board, 1988. Future risk: research strategies of the 1990s. SAB-EC-88-040. U. S. Environmental Protection Agency, Washington, DC: 221 pp.

    Google Scholar 

  • Science Advisory Board, 1990. Reducing risk: setting priori ies and strategies for environmental protection. SAB-EC-90-021. U. S. Environmental Protection Agency, Washington, DC: 425 pp.

    Google Scholar 

  • Smol, J. P., 1992. Paleolimnology: an important tool for effective ecosystem management. J. Aquat. Ecosyst. Health 1: 49–58.

    Article  Google Scholar 

  • Statzner, B., V. H. Resh & A. L. Roux, 1994. The synthesis cf long-term ecological research in the context of concurrently developed ecological theory: design of a research strategy for the Upper Rhone River and its alluvial floodplain habitats. Freshwa. Biol 31: 253–263.

    Article  Google Scholar 

  • Stevens, D. L. Jr., 1994. Implementation of a national monitoring program. J. environ. Manage. 42: 1–29.

    Article  Google Scholar 

  • Stevens, D. L. Jr., 1997. Variable density grid-based sampling designs for continuous spatial populations. Environmetrics 8: 167–195.

    Article  Google Scholar 

  • Stevens, D. L. Jr. & A. R. Olsen, 1999. Spatially restricted surveys over time for aquatic resources. J. Agri. Biol. Environ. Statistics 4: 415–428.

    Article  Google Scholar 

  • Thurow, R. F., D. C. Lee & B. E. Rieman, 1997. Distributicn and status of seven native salmonids in the interior Columbia River basin and portions of the Klamath River and Great Basins, N. am. J. Fish. Mgmt. 17: 1094–1110.

    Article  Google Scholar 

  • Urquhart, N. S., W. S. Overton, and D. S. Birks, 1993. Comparing sampling designs for monitoring ecological status and tiends: impact of temporal patterns. In Barnett, V. (ed.), Statistics n the Environment. Wiley & Sons, Sussex, England: 71–85.

    Google Scholar 

  • Urquhart, N. S., S. G. Paulsen, and D. P. Larsen, 1998. Monitoring for policy-relevant regional trends overtime. Ecol. Appl. 8: 246–257.

    Google Scholar 

  • Van Sickle, J. & R. M. Hughes, 2000. Classification strengths of ecoregions, catchments and geographic clusters for aquatic vertebrates in Oregon. J. n. am. Benthol. Soc. 19.

    Google Scholar 

  • White, D., A. J. Kimerling & W. S. Overton, 1992. Cartographic and geometric components of a global sampling design for environmental monitoring. Cart. Geogr. Info. Syst. 19: 5–22.

    Article  Google Scholar 

  • Whittier, T. R., D. B. Halliwell & S. G. Paulsen, 1997. Cyprinid distributions in northeast U. S.A. lakes: evidence of regional-scale minnow biodiversity losses. Can. J. Fish. aquat. Sci. 54: 1593–1607.

    Google Scholar 

  • Wiederholm, T. & R. K. Johnson, 1997. Monitoring and assessment of lakes and watercourses in Sweden. In Ottens, J. J., F. A. M. Claessen, P. G. Stoks, J. G. Timmerman & R. C. Ward (eds), Monitoring Tailor Made II: Information Strategies in Water Management. Elsevier, New York, NY: 317–329.

    Google Scholar 

  • Williams, J. E., J. E. Johnson, D. A. Hendrickson, S. Contreras-Balderas, J. D. Williams, M. Navarro-Mendoza, D. E. McAllister & J. E. Deacon, 1989. Fishes of North America endangered, threatened or of special concern: 1989. Fisheries 14(6): 2–20.

    Article  Google Scholar 

  • Wright, J. F., D. Moss, P. D. Armitage & M. T. Furse, 1984. A preliminary classification of running-water sites in Great Britain based on macroinvertebrate species and the prediction of community type using environmental data. Freshwat. Biol. 14: 221–256.

    Article  Google Scholar 

  • Yeardley, R. B. Jr., J. M. Lazorchak & S. G. Paulsen, 1998. Elemental fish tissue contamination in northeastern U.S. lakes: evaluation of an approach to regional assessment. Envir. Toxicol. Chem. 17: 1875–1884.

    Article  CAS  Google Scholar 

  • Yoder, C. O. & E. T. Rankin, 1998. The role of biological indicators in a state water quality management process. Envir. Monitor. Assess. 51: 61–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Jungwirth S. Muhar S. Schmutz

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hughes, R.M., Paulsen, S.G., Stoddard, J.L. (2000). EMAP-Surface Waters: a multiassemblage, probability survey of ecological integrity in the U.S.A.. In: Jungwirth, M., Muhar, S., Schmutz, S. (eds) Assessing the Ecological Integrity of Running Waters. Developments in Hydrobiology, vol 149. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4164-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4164-2_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5814-8

  • Online ISBN: 978-94-011-4164-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics