Skip to main content

The influence of environmental variables on the abundance of aquatic insects: a comparison of ordination and artificial neural networks

  • Conference paper
Assessing the Ecological Integrity of Running Waters

Part of the book series: Developments in Hydrobiology ((DIHY,volume 149))

Abstract

Two methods to predict the abundance of the mayflies Baetis rhodani and Baetis vernus (Insecta, Ephemeroptera) in the Breitenbach (Central Germany), based on a long-term data set of species and environmental variables were compared. Statistic methods and canonical correspondence analysis (CCA) attributed abundance of emerged insects to a specific discharge pattern during their larval development. However, prediction (specimens per year) is limited to magnitudes of thousands of specimens (which is outside 25% of the mean). The application of artificial neural networks (ANN) with various methods of variable pre-selection increased the precision of the prediction. Although more than one appropriate pre-processing method or artificial neural networks was found, R 2 for the best abundance prediction was 0.62 for B. rhodani and 0.71 for B. vernus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baran, P., S. Lek, M. Delacoste & A. Belaud, 1996. Stochastic models that predict trout population density or biomass on a mesohabitat scale. Hydrobiologia 337: 1–9.

    Article  Google Scholar 

  • Bohle, H. W., 1969. Untersuchungen über die Embryonalentwicklung und die embryonale Diapause bei Baetis vermis Curt. und Baetis rhodani (Pict). Zool. Jb. Anat. Ontog. Tiere 86: 493–575.

    Google Scholar 

  • Chon, T. S., 1996. A self-organizing mapping of community patterns for benthic macroinvertebrates in streams in Korea through artificial neural networks. 1996 Annual Combined Meeting of the Ecological Society of America on Ecologists/Biologists as Problem Solvers, Providence, Rhode Island, USA, August 10-14, 1996. Bull. Ecol. Soc. Am. 77 (3 Suppl. Part 2): 81.

    Google Scholar 

  • Chon, T. S., Y. S. Park, K. H. Moon & E. Y. Cha, 1996. Patternizing communities by using an artificial neural network. Ecol. Model. 90: 69–78.

    Article  Google Scholar 

  • Cisneros Mata, M. A., T. Brey, A. Jarre Teichmann, W. Garcia Franco & G. Montemayor Lopez, 1996. Artificial neural networks to forecast biomass of Pacific sardine and its environment. Ci. Mar. 22: 427–442.

    Google Scholar 

  • Clifford, H. C., 1982. Life cycles of mayflies, with special reference to voltinism. Quest. Ent. 18: 15–90.

    Google Scholar 

  • Colasanti, R. L., 1991. Discussions of the possible use of neural network algorithms in ecological modelling. Binary Comput. Microbiol. 3: 13–15.

    Google Scholar 

  • Dapper, T., 1997. Dimensionsreduzierende Vorverarbeitungen für Neuronale Netze mit Anwendungen in der Gewässerökologie. Dissertation im Fachbereich Mathematik/Informatik der Universität Gesamthochschule Kassel, 243 pp.

    Google Scholar 

  • Giske, J., G. Huse & O. Fiksen, 1998. Modelling spatial dynamics offish. Rev. Fish Biol. Fisher. 8: 57–91.

    Article  Google Scholar 

  • Guegan, J. F., S. Lek & T. Oberdorff, 1998. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391: 382–384.

    Article  Google Scholar 

  • lilies, J., 1971. Emergenz 1969 im Breitenbach. Arch. Hydrobiol. 69: 14–59.

    Google Scholar 

  • Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biol. Cyber. 43: 59–69.

    Article  Google Scholar 

  • Lek, S. & P. Baran, 1997. Estimations of trout density — a neural networks approach. Nonlinear Anal. Theory Methods Appl. 30: 4985–4990.

    Article  Google Scholar 

  • Lek, S., A. Belaud, P. Baran, I. Dimopoulos & M. Delacoste, 1996a. Role of some environmental variables in trout abundance models using neural networks. Aquat. Liv. Res. 9: 23–29.

    Article  Google Scholar 

  • Lek, S., M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga & S. Aulagnier, 1996b. Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Model. 90: 39–52.

    Article  Google Scholar 

  • Mastrorillo, S., S. Lek & F. Dauba, 1997a. Predicting the abundance of minnow Phoxinus phoxinus (Cyprinidae) in the river Ariège (France) using artificial neural networks. Aquat. Liv. Res. 10: 169–176.

    Article  Google Scholar 

  • Mastrorillo, S., S. Lek, F. Dauba & A. Belaud, 1997b. The use of artificial neural networks to predict the presence of small-bodied fish in a river. Freshwat. Biol. 38: 237–246.

    Article  Google Scholar 

  • Paruelo, J. M. & F. Tomasel, 1997. Prediction of functional characteristics of ecosystems — a comparison of artificial neural networks and regression models. Ecol. Model. 98: 173–186.

    Article  Google Scholar 

  • Rumelhart, D. E., G. E. Hinton & R. J. Williams, 1986. Learning internal representations by error propagation. In: Rumelhart, D. E. & J. L. McClelland (eds), Parallel Distributed Processing, Vol. I. MIT Press: Cambridge. MA.

    Google Scholar 

  • Schmidt, H.-H., 1984. Einfluß der Temperatur auf die Entwicklung von Baetis venins Curtis. Arch. Hydrobiol. (Suppl.) 69: 364–410.

    Google Scholar 

  • SPSS, 1997. SPSS Professional Statistics” 7.5.1. Chicago, SPSS Inc., 1997.

    Google Scholar 

  • Ter Braak, C. J. F., 1988. CANOCO — a Fortran program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal component analysis and redundancy analysis (version 2.1 ). Agricultural Mathematics Group, Wageningen, The Netherlands. 95 pp.

    Google Scholar 

  • Ter Braak, C. J. F., 1990. Update Notes, CANOCO version 3.10. Agricultural Mathematics Group, Wageningen, The Netherlands, 35 pp.

    Google Scholar 

  • Ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspodence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57: 255–289.

    Article  Google Scholar 

  • Wagner, R., 1989. The influence of artificial stream bottom siltation on Ephemeroptera in emergence traps. Arch. Hydrobiol. 115: 71–80.

    Google Scholar 

  • Wagner, R. & H.-H. Schmidt, in press. Relationship of aquatic insects emergence (Ephemeroptera, Plecoptera, Trichoptera) to environmental variables, a 25 years analysis of the Breitenbach. Freshwat. Biol.

    Google Scholar 

  • Walley, W. J. & V. N. Fontama, 1998. Neural network pedicters of average score per taxon and number of families at unpolluted river sites in Great Britain. Wat. Res. 32: 613–622.

    Article  CAS  Google Scholar 

  • Wernecke, U. & P. Zwick, 1992. Mortality of the terrestrial adult and aquatic nymphal life stages of Baetis vernus and Baetis rhodani in the Breitenbach (Insecta. Ephemeroptera). Freshwat. Biol. 28: 249–255.

    Article  Google Scholar 

  • Whitehead, P. G., A. Howard & C. Arulmani, 1997. Modelling algal growth and transport in rivers. A comparison of time series analysis, dynamic mass balance and neural network tec iniques. Hydrobiologia 349: 39–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Jungwirth S. Muhar S. Schmutz

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wagner, R., Dapper, T., Schmidt, HH. (2000). The influence of environmental variables on the abundance of aquatic insects: a comparison of ordination and artificial neural networks. In: Jungwirth, M., Muhar, S., Schmutz, S. (eds) Assessing the Ecological Integrity of Running Waters. Developments in Hydrobiology, vol 149. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4164-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4164-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5814-8

  • Online ISBN: 978-94-011-4164-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics