Skip to main content

Photoluminescence from InGaAs/GaAs Quantum Dots in a High Electric Field

  • Chapter
Book cover Optical Properties of Semiconductor Nanostructures

Part of the book series: NATO Science Series ((ASHT,volume 81))

  • 458 Accesses

Abstract

Growing interest in semiconductor quantum dots (QDs) results both from their peculiar properties and their prospective applications in optoelectronics. Semiconductor laser devices with QDs have been shown to have lower threshold current density, higher differential gain, and higher thermal stability as compared to their quantum well-based counterparts [1–2]. The 3 dimensional confinement of electronic motion in QDs results in a S-like density of states, which is crucial to QD properties [3]. The energy distribution of these levels depends on the size of a particular dot. Therefore the QD photoluminescence (PL) spectra obtained under a non-resonant excitation, which influences a large ensemble of QDs, have the form of Gaussian peak with a broadening factor depending on the size distribution of the QDs [4–5]. With a decrease of the number of excited QDs, well reproducible individual peaks of ground states can be observed in the PL spectrum. The most successful way of fabricating QDs makes use of the Stranski-Krastanow mode of growth. Deposition of a mismatched material layer (such as InGaAs on GaAs) proceeds in two steps: first a very thin layer of highly strained material is grown, forming the so called wetting layer (WL), then the StranskiKrastanow growth mode transition takes place, resulting in the formation of 3dimensional highly strained islands [6–8]. The areal density and shape strongly depends on the substrate orientation and growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fafard S., Hinzer K., Raymond S., Dion M., McCaffrey J., Feng Y., and Charbonneau S. (1996) Red-emitting semiconductor dot lasers, Science 274 1350–1353

    Article  ADS  Google Scholar 

  2. Bimberg D., Ledentsov N. N., Grundmann M., Kirstaedter N., Schmidt O. G., Mao M. H., Ustinov V. M., Egorov A. Y., Zhukov A. E., Kopev P. S., Alferov Z. I., Ruvimov S. S., Goesele U., and Heydenreich J. (1996) InAs-GaAs quantum pyramid lasers: in situ growth, radiative lifetimes and polarization properties, Jpn. J. Appl. Phys. 35, 1311–1319

    Article  ADS  Google Scholar 

  3. Ashoori R.C. (1996) Electrons in artificial atoms, Nature 379, 413–419

    Article  ADS  Google Scholar 

  4. Fafard S., Leon R., Leonard D., Merz J. L., and Petroff P. M. (1994) Visible photoluminescence from N-dot ensembles and the linewidth of ultrasmall AllnAs/AGaAs quantum dots, Phys. Rev. B 50 8086–8089

    Article  ADS  Google Scholar 

  5. Leon R, Petroff P. M., Leonard D., and Fafard S. (1995) Spatially resolved visible qluminescence of self-assembled semiconductor quantum dots, Science 267 1966–1969

    Article  ADS  Google Scholar 

  6. Leonard D., Krishnamurthy M., Reaves C.M., Denbaars S.P., and Petroff P.M. (1993) Appl. Phys, Lett. 63 3203–3205

    Article  ADS  Google Scholar 

  7. Leonard D., Pond K., and Petroff P.M. (1994) Critical layer thickness for self-assembled InAs island on GaAs, Phys. Rev B 50 11687–11692

    Article  ADS  Google Scholar 

  8. Leon R., Fafard S., Leonard D., Metz J.L., and Petroff P.M., (1995) Visible luminescence from semicondutor quantum dots in large ensembles, Appl. Phys. Lett. 67 521–523

    Article  ADS  Google Scholar 

  9. Mendez E.E., Bastard G., Chang L.L., Esaki L, Morkoc H., and Fisher R. (1982) Effect of an electric field on the luminescence of GaAs quantum wells, Phys. Rev B. 26 7101–7104

    Article  ADS  Google Scholar 

  10. Koehler K., Polland H.-J., Schultheis L., and Tu C.W. (1988) Photoluminescence of two-dimensional excitons in an electric field: Lifetime enhancement and field ionization in GaAs quantum wells, Phys. Rev. B 38 5496–5503.

    Article  ADS  Google Scholar 

  11. Empedocles S.A. and Bawendi M.G., (1997) Quantum-confined Stark effect in single CdSe nanocrystallite Quantum dots, Science, 278 2114–2117

    Article  ADS  Google Scholar 

  12. Empedocles S.A., Norris D.J., and Bawendi M.G. (1996) Photoluminescence spectroscopy of single CdSe nanocrystallie quantum dots, Phys. Rev. Lett, 77, 3873–3876

    Article  ADS  Google Scholar 

  13. Heller W., Bockelmann U., and Abstreiter G. (1998) Electric-field effects on excitons in quantum dots, Phys. Rev. B 57 6270–6273

    Article  ADS  Google Scholar 

  14. Bockelmann U., Roussignol Ph., Filoramo A., Heller W., Abstreiter G., Banner K., Bohm G., and Weimann G. (1996) Time resolved spectroscopy of single quantum dots: Fermi Gas of Excitons?, Phys. Rev. Lett. 76 3622–3625

    Article  ADS  Google Scholar 

  15. Pistol M.-E., Hessman D., Lindahl J., Montelius L., and Samuelson L (1996) STMbased luminescence spectroscopy on single quantum dots, Mater. Sc. Eng B 42 82–87

    Article  Google Scholar 

  16. Raymond S., Reynolds J.P., Merz J.L., Fafard S., Feng Y., and Charbonneau, S., (1998) Asymmetric Stark shift in AllnAs/A1GaAs self-assembled dots, Phys. Rev. B 58 R13415– R13418

    Article  ADS  Google Scholar 

  17. Schmidt K.H., Medeiros-Ribeiro, Petroff P.M. (1998) Photoluminescence of charged InAs self-assembled quantum dots, Phys. Rev. B 58 3597–3600

    Article  ADS  Google Scholar 

  18. Lobo C (1997) unpublished

    Google Scholar 

  19. Lobo C. and Leon R (1998) InGaAs island shapes and adatom migration behavoiur on (100), (110), (111), and (311) GaAs surfaces, J. Appl. Phys. 83 4168–4172

    Article  ADS  Google Scholar 

  20. Schmidt K.H., Medeiros-Ribeiro, Garcia J., and Petroff P.M. (1997) Size quantization effects in InAs self-assembled quantum dots, Appl. Phys. Lett. 70 1727–1729

    Article  ADS  Google Scholar 

  21. Leon R., Kim Y., Jagadish C., Gal M., Zou J., and Cockayne D. J. H. (1996) Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots, Appl. Phys. Lett. 69 1888–1890

    Article  ADS  Google Scholar 

  22. Malik S., Roberts C., Murray R., and Pate M. (1997) Tuning self-assembled InAs quantum dots by rapid thermal annealing, Appl. Phys. Lett 71 1987–1989

    Article  ADS  Google Scholar 

  23. Mo Q. W., Fan T. W., Gong Q., Wu J., Wang Z. G., and Bai Y.Q. (1998) Effects of annealing on self-organized InAs quantum islands on GaAs (100), Appl. Phys. Lett. 73 3518–3520

    Article  ADS  Google Scholar 

  24. Leon R., Kim Y., Jagadish C., Gal M., Zou J., and Cockayne D. J. H. (1996) Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots, Appt Phys. Leu. 69 1888–1890

    Article  ADS  Google Scholar 

  25. Lobo C., Leon R.Fafard S., and Piva P. G. (1998) Intermixing induced changes in the radiative emission from 11I-V quantum dots, Appl. Phys. Lett. 72 2850–2852

    Article  ADS  Google Scholar 

  26. Leon R., Fafard S., Piva P. G., Ruvimov S., and Liliental-Weber Z.(1998) Tunable intersublevel transitions in self-forming semiconductor quantum dots, Phys. Rev. B 58 R4262–R4265

    Article  ADS  Google Scholar 

  27. Leon R., Williams D. R. M., Krueger J., Weber E. R., and Melloch M. R. (1997) Diffusivity transients and radiative recombination in intermixed In0.5Ga0.5As/GaAs quantum structures, Phys. Rev B 56 R4336–R4339

    Article  ADS  Google Scholar 

  28. Babiñski A, Wysmolek A., Tomaszewicz T., Baranowski J.M., Leon R., Lobo C, and Jagadish C. (1998) Electrically modulated photoluminescence in self-organized InGaAs/GaAs quantum dots, Appl. Phys. Leu, 72, 2811–2813

    Article  ADS  Google Scholar 

  29. Bmunkov P.N., Polimeni A., Stoddart S.T., Henini M, Eaves L., Main P.C., Kovsh A.R., Musikhin Y.G., and Konnikov S.G. (1998) Electronic structure of self-assembled InAs quantum dots in GaAs matrix, Appl. Phys. Lett. 73, 1092–1094

    Article  ADS  Google Scholar 

  30. Bimberg D., Ledentsov N. N., Grundmann M., Kirstaedter N., Schmidt O. G., Mao M. H., Ustinov V. M., Egorov A. Y., Zhukov A. E., Kopev P. S., Alferov Z. I., Ruvimov S. S., Goesele U., and Heydenreich J. (1996) InAs-GaAs quantum dots: from growth to lasers,phys. stat. sol (b) 194 159–173

    ADS  Google Scholar 

  31. Babiñski A, Tomaszewicz T., Wysmolek A., Baranowski J.M., Lobo C., Leon R., and Jagadish C. will be published in (1999) Microcrystalline and Nanocrystalline Semiconductors - 1998. Symposium Mater. Res. Soc. 1998

    Google Scholar 

  32. Korona, K.P., et al. to be published

    Google Scholar 

  33. Drexler H.Leonard D., Hansen W., Kotthaus J.P., and Petroff P.M. (1994) Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots, Phys. Rev. Lett. 73, 2252–2255

    Article  ADS  Google Scholar 

  34. Medeiros-Ribeiro G., Leonard D., and Petroff P. M. (1995) Electron and hole energy levels in InAs self-assembled quantum dots, Appl. Phys. Lett. 66 1767–1769

    Article  ADS  Google Scholar 

  35. Skolnick M., this conference

    Google Scholar 

  36. Wójs A. and Hawrylak P.(1997) Theory of photoluminescence from modulation doped self-assembled quantum dots in a magnetic field, Phys. Rev. B 55, 13 066–13071

    Google Scholar 

  37. Lee J.I, Lee H.G., Shin E., Yu S., Kim D., and Ihm G. (1997) Many-body effect on modulation-doped InAs/GaAs quantum dots, Appl. Phys. Lett 70 2885–2887

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Babiński, A. (2000). Photoluminescence from InGaAs/GaAs Quantum Dots in a High Electric Field. In: Sadowski, M.L., Potemski, M., Grynberg, M. (eds) Optical Properties of Semiconductor Nanostructures. NATO Science Series, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4158-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4158-1_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6317-0

  • Online ISBN: 978-94-011-4158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics