Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 81))

  • 463 Accesses

Abstract

We have fabricated microcavities with three-dimensional optical confinement by the combination of epitaxially grown vertical cavity surface emitting cavity structures and lithographic patterning. The emission spectra of semiconductor pillars fabricated by this technique show a number of optical modes, which can be tuned by changing the lateral dimensions of the structures. By using angle-resolved photoluminescence spectroscopy, the dispersion of the optical modes in these photonic dots has been investigated. In contrast to microcavities with confinement in one direction only, microcavities with three-dimensional optical confinement show no dispersion of the mode energies in angle resolved photoluminescence experiments. Studies of 1D photonic wires show suppression of dispersion perpendicular to the wires whereas dispersion is observed along the 1D structures. By investigations of the far field intensity distribution of different modes, information on the internal electromagnetic field distributions is obtained. The energies of the optical modes in the photonic dots as well as the intensity variations in angle resolved experiments have been modelled by numerical approaches, which agree quantitatively with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  3. see, for example, J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic Crystals, Molding the Flow of Light, (Princeton University Press, NJ, 1995).

    MATH  Google Scholar 

  4. G. Björk et al., Phys. Rev. A 44, 669 (1991).

    Article  ADS  Google Scholar 

  5. J.P. Reithmaier et al., Phys. Rev. Lett. 78, 378 (1997).

    Article  ADS  Google Scholar 

  6. R. Houdre et al., Phys. Rev. Lett. 73 2043 (1994)

    Article  ADS  Google Scholar 

  7. T. Gutbrod et al., Phys. Rev. B 59, 2223 (1999).

    Article  ADS  Google Scholar 

  8. A. Kuther et al., Phys. Rev. B 58, 15744 (1998).

    Article  ADS  Google Scholar 

  9. B. Ohnesorge et al., Phys. Rev. B 56, 4367 (1997), J.M. Gérard et al., Phys. Rev. Lett. 81, 1110 (1998).

    Article  ADS  Google Scholar 

  10. Le Si Dang et al., Phys. Rev. Lett. 81 3920 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Forchel, A., Reithmaier, J.P., Bayer, M., Reinecke, T.L., Kulakovskii, V.D. (2000). Microcavities with 3D Optical Confinement. In: Sadowski, M.L., Potemski, M., Grynberg, M. (eds) Optical Properties of Semiconductor Nanostructures. NATO Science Series, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4158-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4158-1_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6317-0

  • Online ISBN: 978-94-011-4158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics