Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 81))

  • 455 Accesses

Abstract

We study the spatial distribution of the photoluminescence of a gated two-dimensional electron gas with sub-wavelength resolution. This is done by scanning a tapered Optical fibre tip with an aperture of 250 nm in the near field region of the sample surface, and collecting the photoluminescence. The spectral line of the negatively charged exciton, formed by binding of a photo-excited electron-hole pair to an electron, serves as an indicator for the local presence of charge. The local luminescence intensity of this line is directly proportional to the number of electrons under the tip. We observe large spatial fluctuations in this intensity in the gate voltage range, where the electron conductivity exhibits a sharp drop. The amplitude of these fluctuations increases and the Fourier spectrum extends to lower spatial frequencies as the gate voltage becomes more negative. We show that the fluctuations are due to the statistical distribution of localised electrons in the random potential of the remote ionised donors. We use these fluctuations to image the electron and donor distribution in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jiang, C., Tsui, D.C., and Weimann, G. (1988), Threshold transport of high-mobility two-dimensional electron gas in GaAs/A1GaAs heterostructures, Appl. Phys. Lett 53, 1533–1535.

    Article  ADS  Google Scholar 

  2. Efros, A. L. (1988), Density of states of 2D electron gas and width of the plateau of IQHE, Solid State Commun 65, 1281–1284 and (1989), Metal-non-metal transition in heterostructures with thick spacer layers, ibid 70, 253–256.

    Google Scholar 

  3. Bar-Joseph, I., Kuo, J. M., Klingshirn, C., Livescu, G., Miller, D.A.B., Chang, T.Y., and Chemla, D. S. (1987), Absorption spectroscopy of the continuous transition from low to high electron density in a single modulation doped InGaAs quantum well, Phys. Rev. Lett 59, 1357–1360.

    Article  ADS  Google Scholar 

  4. Delalande, C., Orgonasi, J., Brum, J.A., Bastard, G., and Voos, M. (1987), Optical studies of GaAs quantum well based field-effect transistor, Appl. Phys. Lett 51, 1346–1348.

    Article  ADS  Google Scholar 

  5. Finkelstein, G., Shtrikman, H., and Bar-Joseph, I. (1995), Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition, Phys. Rev. Lett 74, 976–979.

    Article  ADS  Google Scholar 

  6. Lampert, M.A. Phys. Rev. Lett 1, 450 (1950).

    Article  ADS  Google Scholar 

  7. Kheng, K., Cox, R.T., Merle d’Aubigne, Y., Bassani, F., Saminadayar, K., and Tatarenko, S. (1993), Observation of negatively charged excitons X in semiconductor quantum wells, Phys. Rev. Lett 71, 1752–1755.

    Article  ADS  Google Scholar 

  8. Shields, A.J., Pepper, M., Ritchie, D.A., Simmons, M.Y., and Jones, G.A.C. (1995), Quenching of excitonic optical transitions by excess electrons in GaAs quantum wells, Phys. Rev. B 51, 18049–18052.

    Article  ADS  Google Scholar 

  9. Buhmann, H., Mansouri, L., Wang, J., Beton, P.H., Mori, N., Eaves, L., Henini, M., and Potemski, M. (1995), Electron-concentration-dependent quantum-well luminescence: Evidence for a negatively charged exciton, Phys. Rev. B 51, 7969–7972.

    Article  ADS  Google Scholar 

  10. Ron, A., Yoon, H.W., Sturge, M.D., Manassen, A., Cohen, E., and Pfeiffer, L.N. (1996), Thermodynamics of free trions in mixed type GaAs/AlAs quantum wells, Solid State Commun 97, 741–745.

    Article  ADS  Google Scholar 

  11. Schmitt-Rink, S., Chemla, D.S., and Miller, D.A.B. (1989), Linear and nonlinear optical properties of semiconductor quantum wells, Advances in Physics 38, 89–188.

    Article  ADS  Google Scholar 

  12. Betzig, E., and Trautman, J. K. (1992), Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257, 189–195.

    Article  ADS  Google Scholar 

  13. Paesler, M.A., and Moyer, P.J. Near Field Optics (Wiley, New York, 1996).

    Google Scholar 

  14. Eytan, G., Yayon, Y., Rappaport, M., Shtrikman, H., and Bar-Joseph, I. (1998), Near-field spectroscopy of a gated electron gas: a direct evidence for electron localization, Phys. Rev. Lett 81, 1666–1669.

    Article  ADS  Google Scholar 

  15. Karrai, K. and Grober, R. D. (1995), Piezoelectric tip-sample distance control for near field optical microscopes, Appl. Phys. Lett 66, 1842–1844.

    Article  ADS  Google Scholar 

  16. Hess, H.F., Betzig, E., Harris, T.D., Pfeiffer, L.N., and West, K.W. (1994), Near-field spectroscopy of the quantum constituents of a luminescent system, Science 264, 1740–1745.

    Article  ADS  Google Scholar 

  17. Harris, T.D., Gershoni, D., Grober, R.D., Pfeiffer, L., West, K., and Chand, N. (1996), Near-field optical spectroscopy of single quantum wires, Appl. Phys. Lett 68, 988–990.

    Article  ADS  Google Scholar 

  18. Yayon, Y. M.Sc thesis work, The Feinberg graduate school, Weizmann Institute, Rehovot, Israel (1997).

    Google Scholar 

  19. Obermuller, C., Karrai, K., Kolb, G., and Abstreiter, G. (1995), Transmitted radiation through a subwavelength-sized tapered optical fiber tip in near-field scanning optical microscopy, Ultramicroscopy 61, 171–177.

    Article  Google Scholar 

  20. Levy, J., Nikitin, V., Kikkawa, J.M., Cohen, A., Samarth, N., Garcia, R., and Awschalom, D. D. (1996), Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures, Phys. Rev. Lett 76, 1948–1951.

    Article  ADS  Google Scholar 

  21. G. A. Massey (1984), Microscopy and pattern generation with scanned evanescent waves, Appl. Opt 23, 658–660.

    Article  ADS  Google Scholar 

  22. Sajoto, T., Suen, Y.W., Engel, L.W., Santos, M.B., and Shayegan, M. (1990), Fractional quantum Hall effect in very-low-density GaAs/AlXGal_xAs heterostructures, Phys. Rev. B 41, 8449–8460.

    Article  ADS  Google Scholar 

  23. Kravchenko, S.V., Simonian, D., Sarachik, M., Mason, P., and Furneaux, J.E. (1996), Electric field scaling at a B=0 metal-insulator transition in two dimensions, Phys. Rev. Lett 77, 4938–4941.

    Article  ADS  Google Scholar 

  24. Efros, A.L., Pikus, F.G., and Burnett, V.G. (1993), Density of states of a two-dimensional electron gas in a long-range random potential, Phys. Rev. B 47, 2233–2243.

    Article  ADS  Google Scholar 

  25. Nixon, J.A. and Davies, J.H. (1990), Potential fluctuations in heterostructure devices, Phys. Rev. B 41, 7929.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eytan, G., Yayon, Y., Rappaport, M., Shtrikman, H., Bar-Joseph, I. (2000). Near-Field Spectroscopy of a Gated Electron Gas. In: Sadowski, M.L., Potemski, M., Grynberg, M. (eds) Optical Properties of Semiconductor Nanostructures. NATO Science Series, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4158-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4158-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6317-0

  • Online ISBN: 978-94-011-4158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics