Skip to main content

Regulatory potential of nonautonomous mariner elements and subfamily crosstalk

  • Chapter
Transposable Elements and Genome Evolution

Part of the book series: Georgia Genetics Review 1 ((GEGR,volume 1))

Abstract

Two naturally occurring nonautonomous mariner elements were tested in vivo for their ability to down-regulate excision of a target element in the presence of functional mariner transposase. The tested elements were the peach element isolated from Drosophila mauritiana, which encodes a transposase that differs from the autonomous element Mosl in four amino acid replacements, and the DTBZ1 element isolated from D. teissieri, which encodes a truncated protein consisting of the first 132 residues at the amino end of the normally 345-residue transposase. We provide evidence that the protein from the peach element does interact to down-regulate wildtype transposase, indicating that at least some nonautonomous elements in natural populations that retain their open reading frame may play a regulatory role. In contrast, our tests reveal at most a weak interaction between transposase from the autonomous Mosl element and the truncated protein from DTBZ1, and none between Mosl transposase and that from the distantly related mariner-like element Himar1 identified in the horn fly Haematobia irritans. Hence, the extent of regulatory crosstalk between mariner-like elements may be limited to closely related ones. The evolutionary implications of these results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ORF:

open reading frame

PCR:

polymerase chain reaction

References

  • Andrews, J.D. & G.B. Gloor, 1995. A role for the KP leucine zipper in regulating P element transposition in Drosophila melanogaster. Genetics 141: 587–594.

    PubMed  CAS  Google Scholar 

  • Auge-Gouillou, C., Y. Bigot & G. Periquet, 1999. Mariner-like sequences are present in the genome of the fruitfly, Drosophila melanogaster. J. Evol. Biol. 12: 742–745.

    Article  CAS  Google Scholar 

  • Berg, D.E. & M.M. Howe, Editors. Mobile DNA. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Bilanchone, V.W., J.A. Claypool, P.T. Kinsey & S.B. Sandmeyer, 1993. Positive and negative regulatory elements control expression of the yeast retrotransposon Ty3. Genetics 134: 685–700.

    PubMed  CAS  Google Scholar 

  • Brunet, F., F. Godin, C. Bazin, J.R. David & P. Capy, 1996. The mariner transposable element in natural populations of Drosophila teissieri. J. Mol. Evol. 42: 669–675.

    Article  PubMed  CAS  Google Scholar 

  • Chaboissiert, M.C., A. Bucheton & D.J. Finnegan, 1998. Copy number control of a transposable element, the I factor, a LINE-like element in Drosophila. Proc. Natl. Acad. Sci. USA 95: 11781–11785.

    Article  Google Scholar 

  • Fedoroff, N., 1995. Maize transposable element regulation. Maydica 40:7–12.

    Google Scholar 

  • Fridlender, M., Y. Sitrity, O. Shaul, O. Gileadi & A.A. Levy, 1998. Analysis of the Ac promoter: structure and regulation. Mol. Gen. Genet. 258: 306–314.

    Article  PubMed  CAS  Google Scholar 

  • Garza, D., M. Medhora, A. Koga & D.L. Hartl, 1991. Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics 128: 303–310.

    PubMed  CAS  Google Scholar 

  • Hartl, D.L., A.R. Lohe & E.R. Lozovskaya, 1997. Modern thoughts on an ancyent marinere: Function, evolution, regulation. Ann. Rev. Genet. 31: 337–358.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, J.W., M.M. Medhora & D.L. Hartl, 1986. Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl. Acad. Sci. USA 83: 8684–8688.

    Article  PubMed  CAS  Google Scholar 

  • Karess, R.E. & G.M. Rubin, 1984. Analysis of P transposable element functions in Drosophila. Cell 38: 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Labrador, M. & V.G. Corces, 1997. Transposable element-host interactions: regulation of insertion and excision. Ann. Rev. Genet. 31: 381–404.

    Article  PubMed  CAS  Google Scholar 

  • Lampe, D.J., T. Grant & H.M. Robertson, 1998. Factors affecting transposition of the Himar mariner transposon in vitro. Genetics 149: 179–187.

    PubMed  CAS  Google Scholar 

  • Lampe, D.J. & H.M. Robertson, 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15: 5470–5479.

    PubMed  CAS  Google Scholar 

  • Lee, C.C., E.L. Beall & D.C. Rio, 1998. DNA binding by the KP repressor protein inhibits P-element transposase activity in vitro. EMBO J. 17: 4166–4174.

    Article  PubMed  CAS  Google Scholar 

  • Lohe, A.R., D. De Aguiar & D.L. Hartl, 1997. Mutations in the mariner transposase: The “D,D(35)E” consensus sequence is nonfunctional. Proc. Natl. Acad. Sci. USA 94: 1293–1297.

    Article  PubMed  CAS  Google Scholar 

  • Lohe, A.R. & D.L. Hartl, 1996. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol. Biol. Evol. 13: 549–555.

    Article  PubMed  CAS  Google Scholar 

  • Lohe, A.R., D.-A. Lidholm & D.L. Haiti, 1995. Genotypic effects, matemal effects and grand-maternal effects of immobilized derivatives of the transposable element mariner. Genetics 140: 183–192.

    PubMed  CAS  Google Scholar 

  • Lohe, A.R., D.T. Sullivan & D.L. Hartl, 1996. Genetic evidence for subunit interactions in the transposase of the transposable element mariner. Genetics 144: 1087–1095.

    PubMed  CAS  Google Scholar 

  • Maruyama, K. & D.L. Hartl, 1991. Evolution of the transposable element mariner in Drosophila species. Genetics 128: 319–329.

    PubMed  CAS  Google Scholar 

  • Maruyama, K., K.D. Schoor & D.L. Hartl, 1991. Identification of nucleotide substitutions necessary for trans-activation of mariner transposable elements in Drosophila: analysis of naturally occurring elements. Genetics 128: 777–784.

    PubMed  CAS  Google Scholar 

  • Nikitin, A.G. & R.C. Woodruff, 1995. Somatic movement of the mariner transposable element and lifespan of Drosophila species. Mutation Res. 338: 43–49.

    Article  PubMed  CAS  Google Scholar 

  • Patton, S.J., X.V. Gomes & P.K. Geyer, 1992. Position-independent germline transformation in Drosophila using a cuticle pigmentation gene as a selectable marker. Nucleic Acids Res. 20: 5859–5860.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, D.A., J.L. Schutzman, D.L. Hartl & E.R. Lozovskaya, 1995. Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA 92: 8050–8054.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, K.E., M.J. Simmons, J.D. Raymond & C.F. McLarnon, 1990. Quantitative effects of P-element on hybrid dysgenesis in Drosophila melanogaster. Genetics 124: 647–662.

    PubMed  CAS  Google Scholar 

  • Reznikoff, W.S., 1993. The Tn5 transposon. Ann. Rev. Microbiol. 47: 945–963.

    Article  CAS  Google Scholar 

  • Robertson, H.M., 1993. The mariner transposable element is widespread in insects. Nature 362: 241–245.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., 1995. The Tc1-mariner superfamily of transposons in animals. J. Insect Phys. 41: 99–105.

    Article  CAS  Google Scholar 

  • Robertson, H.M. & D.J. Lampe, 1995. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol. Bio. Evo. 12: 850–862.

    CAS  Google Scholar 

  • Robertson, H.M. & E.G. MacLeod, 1993. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol. Biol. 2: 125–139.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, G.M. & A.C. Spradling, 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218: 341–347.

    Article  PubMed  Google Scholar 

  • Simmons, M.J. & L.M. Bucholz, 1985. Transposase titration in Drosophila melanogaster. A model of cytotype in the P-M system of hybrid dysgenesis. Proc. Natl. Acad. Sci. USA 82: 8119–8123.

    CAS  Google Scholar 

  • Simmons, M.J., J.D. Raymond, C.D. Grimes, C. Belinco, B.C. Haake, M. Jordan, C. Lund, T.A. Ojala & D. Papermaster, 1996. Repression of hybrid dysgenesis in Drosophila melanogaster by heat-shock-inducible sense and antisense P-element constructs. Genetics 144: 1529–1544.

    PubMed  CAS  Google Scholar 

  • Stellwagen, A.E. & N.L. Craig, 1998. Mobile DNA elements: controlling transposition with ATP-dependent molecular switches. Trends Biochem. Sci. 23: 486–490.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L.N., U. Sankar, D.J. Lampe, H.M. Robertson & F.L. Graham, 1998. The HimarI mariner transposase cloned in a recombinant adenovirus vector is functional in mammalian cells. Nucl. Acids Res. 26: 3687–3693.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Hartl .

Editor information

John F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Aguiar, D., Hartl, D.L. (2000). Regulatory potential of nonautonomous mariner elements and subfamily crosstalk. In: McDonald, J.F. (eds) Transposable Elements and Genome Evolution. Georgia Genetics Review 1, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4156-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4156-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5812-4

  • Online ISBN: 978-94-011-4156-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics