Skip to main content

Retrotransposon 1731 in Drosophila melanogaster changes retrovirus-like expression strategy in host genome

  • Chapter
Transposable Elements and Genome Evolution

Part of the book series: Georgia Genetics Review 1 ((GEGR,volume 1))

  • 425 Accesses

Abstract

Earlier related to parasitic elements, retrotransposons of eukaryotes have been demonstrated to participate in general cell processes such as chromosome repair and evolution of gene expression (Teng et al., 1996; McDonald, 1993). Here, we report the existence of two classes of genomic copies of retrotransposon 1731 with different expression strategies, one of which might be driven by natural selection. The first class uses conventional translational frameshifting known to ensure expression of reverse transcriptase (RT) open reading frame (ORF), depending on the efficiency of frameshifting. The bulk of genomic copies are related to the second class where the frameshift is prevented as a result of the substitution of a rare codon recognising rare tRNA by a codon preferred by host genome, whereas the RT ORF is restored by downstream single nucleotide deletion. We suggest that natural selection has driven the switching of 1731 expression strategy from retrovirus-like to the fusion-ORF expression. This observation is in accordance with the detection in testes of fused Gag-RT polypeptide encoded by 1731. The abundance of RT in testes may serve for normal development of host tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aquadro, S.F., 1992. Why is genome variable? Insights from Drosophila. Trends Genet. 8: 355–362.

    PubMed  CAS  Google Scholar 

  • Ashburner, M., 1989. Drosophila: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Atwood, A., J.H. Lin & H.L. Levin, 1996. The retrotransposon Tf1 assembles virus-like particles that contain exess Gag relative to integrase because of a regulated degradation process. Mol. Cell Biol. 16: 338–346.

    PubMed  CAS  Google Scholar 

  • Blumenthal, T., 1998. Gene clusters and polycistronic transcription in eukaryotes. Bioessays 20: 480–487.

    Article  PubMed  CAS  Google Scholar 

  • Brierley, C. & A.J. Flavell, 1990. The retrotransposon copia controls the relative levels of its gene products post-transcriptionally by differential expression from its two major mRNAs. Nucleic Acids Res. 18:2947–2951.

    Article  PubMed  CAS  Google Scholar 

  • Champion, S., C. Maisonhaute, M-H. Kim & M. Best-Belpomme, 1992. Characterization of the reverse transcriptase of 1731, a Drosophila melanogaster retrotransposon. Eur. J. Biochem. 209: 523–531.

    Article  PubMed  CAS  Google Scholar 

  • Farabaugh, P.J., 1995. Post-transcriptional regulation of transposition by Ty retrotransposons of Saccharomyces cerevisiae. J. Biol. Chem. 270: 10361–10364.

    PubMed  CAS  Google Scholar 

  • Farabaugh, P.J., 1996. Programmed translational frameshifting. Microbiol. Rev. 60: 103–134.

    PubMed  CAS  Google Scholar 

  • Fourcade-Peronnet, F., L. d’Auriol, J. Becker, F. Galibert & M. Best-Belpomme, 1988. Primary structure and functional organization of Drosophila 1731 retrotransposon. Nucl. Acids Res. 16: 6113–6125.

    Article  PubMed  CAS  Google Scholar 

  • Haoudi, A., M.-H. Kim, S. Champion, M. Best-Belpomme & C. Maisonhaute, 1995. The Gag polypeptides of the Drosophila 1731 retrotransposon are associated to virus-like particles and to nuclei. FEBS Lett. 377: 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Haoudi, A., M. Rachidi, M.H. Kim, S. Champion & M. Best-Belpomme et al., 1997. Developmental expression analysis of the 1731 retrotransposon reveals an enhancement of Gag-Pol frameshifting in males of Drosophila melanogaster. Gene 196: 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, K., S. Pande, B. Faiola, D.P. Moore & J.D. Boeke et al., 1993. A rare tRNA-Arg(CCU) that regulates Ty1 element ribosomal frameshifting is essential for Ty1 retrotransposition in Saccharomyces cerevisiae. Genetics 135: 309–320.

    PubMed  CAS  Google Scholar 

  • Kirchner, J., S.B. Sandmeyer & D.B. Forrest, 1992. Transposition of a Ty3 Gag3-Pol3 fusion mutant is limited by availability of capsid protein. J. Virol. 66: 6081–6092.

    PubMed  CAS  Google Scholar 

  • Levin, H.L., D.C. Weaver & J.D., Boeke, 1993. Novel gene expression mechanism in a fission yeast retroelement: Tf1 proteins are derived from a single primary translation product. EMBO J. 12: 4885–4895.

    PubMed  CAS  Google Scholar 

  • McDonald, J.F., 1993. Evolution and consequences of transposable elements. Current Opin. Genet. Devel. 3: 855–864.

    Article  CAS  Google Scholar 

  • Menninger, J.R., 1983. Computer simulation of ribosome editing. J. Mol. Biol. 171: 383–399.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.L., 1995. Drosophila telomeres: another way to end it all, pp. 339–370 in Telomeres, edited by E.H. Blackburh and C. W. Greider. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Powell, J.R. & J.U. Gleason, 1996. Codon usage and the origin of P elements. Mol. Biol. Evol. 13: 278–279.

    Article  PubMed  CAS  Google Scholar 

  • Schields, D.C., P.M. Sharp, D.G. Higgins & F. Wright, 1988. ’silent’ sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol. Biol. Evol. 5: 704–716.

    Google Scholar 

  • Teng, S.C., B. Kim & A. Gabriel, 1996. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383: 641–644.

    Article  PubMed  Google Scholar 

  • Voytas, D.E. & J.D. Boeke, 1993. Yeast retrotransposons and tRNAs. Trends in Genet. 9: 421–427.

    Article  CAS  Google Scholar 

  • Xu, H. & J.D. Boeke, 1990. Host genes that influence transposition in yeast: the abundance of a rare tRNA regulates Ty1 transposition frequency. Proc. Natl. Acad. Sci. USA 87: 8360–8364.

    Article  PubMed  CAS  Google Scholar 

  • Youngren, S.D., J.D. Boeke, N.J. Sanders & D.J. Garfinkel, 1988. Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol. Cell. Biol. 8: 1421–1431.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kalmykova, A., Maisonhaute, C., Gvozdev, V. (2000). Retrotransposon 1731 in Drosophila melanogaster changes retrovirus-like expression strategy in host genome. In: McDonald, J.F. (eds) Transposable Elements and Genome Evolution. Georgia Genetics Review 1, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4156-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4156-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5812-4

  • Online ISBN: 978-94-011-4156-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics