Skip to main content

Solar Nebula Magnetohydrodynamics

  • Conference paper

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 9))

Abstract

The dynamical state of the solar nebula depends critically upon whether or not the gas is magnetically coupled. The presence of a subthermal field will cause laminar flow to break down into turbulence. Magnetic coupling, in turn, depends upon the ionization fraction of the gas. The inner most region of the nebula (≲ 0.1 AU) is magnetically well-coupled, as is the outermost region (≳10AU). The magnetic status of intermediate scales (~1 AU) is less certain. It is plausible that there is a zone adjacent to the inner disk in which turbulent heating self-consistently maintains the requisite ionization levels. But the region adjacent to the active outer disk is likely to be magnetically “dead.” Hall currents play a significant role in nebular magnetohydrodynamics.

Though still occasionally argued in the literature, there is simply no evidence to support the once standard claim that differential rotation in a Keplerian disk is prone to break down into shear turbulence by nonlinear instabilities. There is abundant evidence—numerical, experimental, and analytic—in support of the stabilizing role of Coriolis forces. Hydrodynamical turbulence is almost certainly not a source of enhanced turbulence in the solar nebula, or in any other astrophysical accretion disk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baibus, S.A., and Hawley, J.F.: 1991, ‘A Powerful Local Shear Instability in Weakly Magnetized Disks’, Astrophys. J. 376, 214–222.

    Article  ADS  Google Scholar 

  • Balbus, S.A., and Hawley, J.F.: 1992a, ‘Is the Oort A-value a Universal Growth Rate Limit for Accretion Disk Shear Instabilities?’, Astwphys. J. 392, 662–666.

    Article  ADS  Google Scholar 

  • Balbus, S.A., and Hawley, J.F.: 1992b, ‘A Powerful Local Shear Instability in Weakly Magnetized Disks. IV. Nonaxisymmetric Perturbations’, Astwphys. J. 400, 610–621.

    Article  ADS  Google Scholar 

  • Balbus, S. A., and Hawley, J. F.: 1998, ‘Instability, Turbulence and Enhanced Transport in Accretion Disks’, Rev. Mod. Phys. 70, 1–53.

    Article  ADS  Google Scholar 

  • Balbus, S.A., and Papaloizou, J.C.B.: 1999, ‘Dynamical Foundations of α Disk Models’, Astrophys. J. 521, 650–658.

    Article  ADS  Google Scholar 

  • Bayly, B. J., Orszag, S. A., and Herbert, T.: 1988, ‘Instability Mechanisms in Shear-flow Transition’, Ann. Rev. Fluid. Mech. 20, 359.

    Article  ADS  Google Scholar 

  • Blaes, O.M., and Balbus, S.A.: 1994, ‘Local Shear Instabilities in Weakly Ionized, Weakly Magnetized Disks’, Astwphys. J. 421, 163–177.

    Article  ADS  Google Scholar 

  • Brandenburg, A., Nordlund, A. A., Stein, R. F., and Torkelsson, U.: 1995, ‘Dynamo Generated Turbulence and Large-scale Magnetic Fields in Keplerian Shear Flows’, Astwphys. J. 446, 741–754.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S.: 1960, ‘The Stability of Non-dissipative Couette Flow in Hydromagnetics’, Pwc. Nat. Acad. Sci. 46, 253–257.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dubrulle, B.: 1993, ‘Differential Rotation as a Source of Angular Momentum Transfer in the Solar Nebula’, Icarus 106, 59–76.

    Article  ADS  Google Scholar 

  • Fleming, T. P., Stone, J. M., and Hawley, J. F.: 1999, ‘Effect of Resistivity on the Nonlinear Stage of the Magnetorotational Instability in Accretion Disks’, Astwphys. J., submitted.

    Google Scholar 

  • Frank, J., King, A., and Raine, D.: 1992, Accretion Power in Astrophysics, Cambridge Univers. Press, Cambridge, England.

    Google Scholar 

  • Gammie, C.F.: 1996, ‘Layered Accretion in T Tauri Stars’, Astwphys. J. 457, 355–362.

    Article  ADS  Google Scholar 

  • Gammie, C.F., and Menou, K.: 1998, ‘On the Origin of Episodic Accretion in Dwarf Novae’, Astwphys. J. 492, L75–L78.

    Article  ADS  Google Scholar 

  • Glassgold, A.E., Najita, J., and Igea, J.: 1997, ‘X-Ray Photoionization of Protoplanetary Disks’, Astwphys. J. 480, 344–350 (Erratum: Astwphys. J., 485, 920).

    Article  ADS  Google Scholar 

  • Goodman J., and Xu, G.: 1994, ‘Parasitic Instabilities in Magnetized, Differentially Rotating Disks’, Astwphys. J. 432, 213–223.

    Article  ADS  Google Scholar 

  • Hartmann, L., Kenyon, S., and Hartigan, P.: 1993, ‘Young Stars, Episodic Phenomena, and Activity and Variability’, in E. H. Levy and J. I. Lunine (eds.), Protostars and Planets III, Univers. Arizona Press, Tucson, pp. 497–518.

    Google Scholar 

  • Hawley, J. F., Balbus, S.A., and Winters, W. W.: 1999, ‘Local Hydrodynamic Stability of Accretion Disks’, Astwphys. J. 518, 394–404.

    Article  ADS  Google Scholar 

  • Hawley, J.F., Gammie, C., and Baibus, S.: 1995, ‘Local Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks’, Astrophys. J. 440, 742–763.

    Article  ADS  Google Scholar 

  • Hawley, J.F., Balbus, S.A., and Winters, W.F.: 1999, ‘Local Hydrodynamic Stability of Accretion Disks’, Astrophys. J. 518, 394–404.

    Article  ADS  Google Scholar 

  • Königl, A.: 1991, ‘Disk Accretion Onto Magnetic T Tauri stars’, Astrophys. J. 370, L39–L43.

    Article  Google Scholar 

  • Landau, L. D., and Lifschitz, E.M.: 1959, Fluid Mechanics, Pergamon, Oxford, England.

    Google Scholar 

  • Jeffreys, H.: 1928, ‘Some Cases of Instability in Fluid Motion’, Proc. Roy. Soc. A 118, 195–208.

    Article  ADS  MATH  Google Scholar 

  • Lin, D.N.C., and Papaloizou, J.C.B.: 1980, ‘On the Structure and Evolution of the Primordial Solar Nebula’, Monthly Notes Royal Astron. Soc. 191, 37–48.

    ADS  Google Scholar 

  • Lin, D.N.C., and Papaloizou, J.C.B.: 1996, ‘Theory of Accretion Disks II: Application to Observed Systems’, Ann. Rev. Astron. Astrophys. 34, 703–748.

    Article  ADS  Google Scholar 

  • Matsumoto, R., Uchida, Y., Hirose, S., Shibata, K., Hayashi, M. R., Ferrari, A., Bodo, G., and Norman, C.: 1996, ‘Radio Jets and the Formation of Active Galaxies: Accretion Avalanches on the Torus by the Effect of a Large Scale Magnetic Field’, Astrophys. J. 461, 115–126.

    Article  ADS  Google Scholar 

  • Nelson, A.F., Benz, W., Adams, F.C., and Arnett, D.: 1998, ‘Dynamics of Circumstellar Disks’, Astrophys. J. 502, 342–371.

    Article  ADS  Google Scholar 

  • Ogilvie, G., and Pringle, J. E.: 1996, ‘The Non-axisymmetric Instability of a Cylindrical Shear Flow Containing an Azimuthal Magnetic Field’, Monthly Notes Royal Astron. Soc. 279, 152–164.

    ADS  Google Scholar 

  • Pringle, J. E.: 1981, ‘Accretion Disks in Astrophysics’, Ann. Rev. Astron. Astrophys. 19, 137–162.

    Article  ADS  Google Scholar 

  • Papaloizou, J.C.B., and Lin, D.N.C.:1995, ‘Theory of Accretion Disks I: Angular Momentum Transport Processes’, Ann. Rev. Astron. Astrophys. 33, 505–540.

    Article  ADS  Google Scholar 

  • Richard, D., and Zahn, J.-P.: 1999, ‘Turbulence in Differentially Rotating Flows: What can be Learned From the Couette-Taylor Experiment?’, Astron. Astrophys. 347, 734–738.

    ADS  Google Scholar 

  • Shakura, N. I., and Sunyaev, R.A.: 1973, ‘Black Holes in Binary Systems. Observational Appearance’, Astron. Astrophys. 24, 337–355.

    ADS  Google Scholar 

  • Stone, J.M., and Balbus, S.A.: 1996, ‘Angular Momentum Transport in Accretion Disks via Convection’, Astrophys. J. 464, 364–372.

    Article  ADS  Google Scholar 

  • Stone, J. M., Hawley, J. F., Gammie, C.F., and Balbus, S.A.: 1996, ‘Three-dimensional Magnetohy-drodynamical Simulations of Vertically Stratified Accretion Disks’, Astrophys. J. 463, 656–673.

    Article  ADS  Google Scholar 

  • Stone, J. M., Gammie, C. F., Balbus, S. A., and Hawley, J: F.: 2000, ‘Transport Processes in Protostellar Disks’, in V. Mannings, A. P. Boss, and S. S. Russell (eds.), Protostars and Planets IV, Univ. Arizona Press, Tucson, in press.

    Google Scholar 

  • Strom, S.E., Edwards, S., and Skrutskie. M.F.: 1993, ‘Evolutionary Time Scales for Circumstellar Disks Associated With Intermediate-and Late-type Stars’, in E.H. Levy and J.I. Lunine, Protostars and Planets III, Univers. Arizona Press, Tucson, pp. 837–866.

    Google Scholar 

  • Tennekes, H., and Lumley, J. L.: 1972, A First Course in Turbulence, MIT Press, Cambridge, USA.

    Google Scholar 

  • Terquem, C., and Papaloizou, J.C.B: 1996, ‘On the Stability of an Accretion Disk Containing a Toroidal Magnetic Field’, Monthly Notes Royal Astron. Soc. 279, 767–784.

    ADS  Google Scholar 

  • Terquem, C., Papaloizou, J.C.B., and Nelson, R. B.: 2000, ‘Disks, Extrasolar Planets, and Migration’, Space Sci. Rev. 92, this volume.

    Google Scholar 

  • Umebayashi, T., and Nakano, T.: 1988, ‘Ionization State and Magnetic Fields in the Solar Nebula’, Prog. Theo. Phys. Suppl. 96, 151–160.

    Article  ADS  Google Scholar 

  • Velikhov, E. P.: 1959, ‘Stability of an Ideally Conducting Liquid Flowing Between Cylinders Rotating in a Magnetic Field’, Sov. Phy. JETP 36, 1398–1404.

    Google Scholar 

  • Wardle, M.: 1999, ‘The Balbus-Hawley Instability in Weakly Ionised Disks’, Monthly Notes Royal Astron. Soc. 307, 849–856.

    Article  ADS  Google Scholar 

  • Zel’dovich, Ya. B., Ruzmaikin, A.A., and Sokoloff, D.D.: 1983, Magnetic Fields in Astrophysics, Gordon and Breach, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Balbus, S.A., Hawley, J.F. (2000). Solar Nebula Magnetohydrodynamics. In: Benz, W., Kallenbach, R., Lugmair, G.W. (eds) From Dust to Terrestrial Planets. Space Sciences Series of ISSI, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4146-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4146-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5807-0

  • Online ISBN: 978-94-011-4146-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics