Skip to main content

On the 53Mn Heterogeneity in the Early Solar System

  • Conference paper

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 9))

Abstract

It is well established that the prolonged and thorough mixing of numerous nucleosynthetic components that constitutes the matter in the solar nebula resulted in an essential isotopic homogeneity of the solar system material. This may or may not be true for the short-lived radionuclides which were injected into or formed within the solar nebula just prior to or during solar system formation. Distinguishing between their heterogeneous or homogeneous distribution is important because the short- lived radionuclides are now widely used for the relative chronology of various objects and processes in the early solar system and as constraints for models of nucleosynthesis. The recent studies of the 53Mn-53Cr isotope system (half life of 53Mn is 3.7 Ma) in various solar system objects have shown that the relative abundance of radiogenic 53Cr is consistent with essentially homogeneous distribution of 53Mn in the asteroid belt. Thus, the relative 53Mn-53Cr chronometer can be directly used for dating samples which originated in the asteroid belt. Importantly, however, all meteorite groups studied so far indicate a clear excess of 53Cr as compared to Earth and to a lunar sample, which exhibits also a terrestrial 53Cr/52Cr ratio. The results from the Martian (SNC) meteorites show that their 53Cr excesses are less than half of those found in the asteroid belt bodies. Thus, the characteristic 53Cr/52Cr ratio of Mars is intermediate between that of the Earth-Moon system and those of the other meteorites. If these 53Cr variations are viewed as a function of the heliocentric distance, the radial dependence of the relative abundances of radiogenic Cr is indicated. This observed gradient can be explained by either an early, volatility controlled, Mn/Cr fractionation within the nebula or by an initial radial heterogeneous distribution of 53Mn. Although model calculations of the Mn/Cr ratios in the bulk terrestrial planets seem to be inconsistent with the volatility driven scenario, the precision of these calculations is inadequate for eliminating this possibility. In contrast, recent studies of the 53Mn-53Cr system in the enstatite chondrites indicate that, while their bulk Mn/Cr ratios are essentially the same as in ordinary chondrites, the 53Cr excess in bulk enstatite chondrites is three times lower than that in the bulk ordinary chondrites. This difference cannot be explained by a Mn/Cr fractionation and, thus, strongly suggests that a radial heterogeneous distribution of 53Mn must have existed in at least the early inner solar system. Using the observed gradient and the 53Cr/52Cr ratio of the bulk enstatite chondrites, their parent body(ies) formed at ~1.4 AU or somewhat closer to the Sun.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allegre, C. J., Poirier, J.-P., Humler, E., and Hofmann, A. W.: 1995, ‘The Chemical Composition of the Earth’, Earth Planet Sci. Lett. 134, 515–526.

    Article  ADS  Google Scholar 

  • Anders, E.: 1988, ‘Circumstellar Material in Meteorites: Noble Gases, Carbon and Nitrogen’, in J. F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, Univ. Arizona Press (UAP), Tucson, pp. 927–955.

    Google Scholar 

  • Baedecker, P.A., and Wasson, J.T.: 1975, ‘Elemental Fractionation Among Enstatite Chondrites’, Geochim. Cosmochim. Acta 39, 735–765.

    Article  ADS  Google Scholar 

  • Bell, J.F., Davis, D.R., Hartmann, W.K., and Gaffey, M. J.: 1989, ‘Asteroids: The Big Picture’, in R. P. Binzel, T. Gehreis, M. S. Matthews (eds.), Asteroids II, UAP, pp. 921–945.

    Google Scholar 

  • Bogdanovski, O., Shukolyukov, A., and Lugmair, G. W.: 1997, ‘53Mn-53Cr Isotope System in the Divnoe Meteorite’, Meteoritics Planet. Sci. 32, A16–A17.

    ADS  Google Scholar 

  • Cassen, P., and Woolum, D. S.: 1997, ‘Nebular Fractionation and Mn-Cr Systematics’, Lunar. Planet. Sci. XXVIII, 211–212.

    Google Scholar 

  • Clayton, D. D., and Jin, L.: 1995, ‘A New Interpretation of 26Al in Meteoritic Inclusions’, Astrophys. J. 451, L87–L91.

    ADS  Google Scholar 

  • Drake, M.J., Newsom, H.E., Capobianco, C.J.: 1989, ‘V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the Origin of the Moon: Experimental Studies’, Geochim. Cosmochim. Acta 53, 2101–2111.

    Article  ADS  Google Scholar 

  • Dreibus, G., and Wänke, H.: 1979, ‘On the Chemical Composition of the Moon and the Eucrite Parent Body and a Comparison With the Composition of the Earth, the Case of Mn, Cr and V’, Lunar. Planet. Sci. X, 315–316.

    ADS  Google Scholar 

  • Dreibus, G., and Wänke, H.: 1980, ‘The Bulk Composition of the Eucrite Parent Asteroid and its Bearing on Planetary Evolution’, Z. Naturforsch. 35 a, 204–216.

    ADS  Google Scholar 

  • Grimm, R.E., and McSween, H.Y. Jr.: 1993, ‘Heliocentric Zoning of the Asteroid Belt by Aluminum-26 Heating’, Science 259, 653–655.

    ADS  Google Scholar 

  • Goarant, F., Guyot, F., Peyronneau, J., and Poirier, J.-P.: 1992, ‘High-pressure and High-temperature Reactions Between Silicates and Liquid Iron Alloys in the Diamond Anvil Cell Studied by Analytical Electron Microscopy’, J. Geophys. Res. 97, 4477–4487.

    Article  ADS  Google Scholar 

  • Hutcheon, I.D., and Jones, R.H.: 1995, ‘The 26Al-26Mg Record of Chondrules: Clues to Nebular Chronology’, Lunar. Planet. Sci. XXVI, 647–648.

    ADS  Google Scholar 

  • Lee, D.-C., and Halliday, A.N.: 1997, ‘Core Formation on Mars and Differentiated Asteroids’, Nature 388, 854–857.

    Article  ADS  Google Scholar 

  • Lee, D.-C., and Halliday, A. N.: 1998, ‘Tungsten Isotopes, the Initial 182Hf/180Hf of the Solar System and the Origin of Enstatite Chondrites’, Lunar. Planet. Sci. XXIX, 1416.

    Google Scholar 

  • Lee, T.: 1988, ‘Implications of Isotopic Anomalies for Nucleosynthesis’, in J.F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, UAP, pp. 1063–1089.

    Google Scholar 

  • Lee, T., Papanastassiou, D.A., and Wasserburg, G.J.: 1976, ‘Demonstration of 26Mg Excess in Allende and Evidence for 26Al’, Geophys. Res. Lett. 3, 109–112.

    Article  ADS  Google Scholar 

  • Lee, T., Shu, F.H., Shang, H., Glassgold, A.E., and Rehm, K.E.: 1998, ‘Protostellar Cosmic Rays and Extinct Radioactivities in Meteorites’, Astrophys. J. 506, 898–912.

    Article  ADS  Google Scholar 

  • Lugmair, G. W., and Shukolyukov, A.: 1998, ‘Early Solar System Timescales According to 53Mn-53Cr Systematics’, Geochim. Cosmochim Acta 62, 2863–2886.

    Article  ADS  Google Scholar 

  • Palme, H., Larimer, J.W., and Lipschutz, M.E.: 1988, ‘Moderately Volatile Elements’, in J.F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, UAP, pp. 436–461.

    Google Scholar 

  • Papanastassiou, D. A.: 1986, ‘Chromium Isotopic Anomalies in the Allende Meteorite’, Astrophys. J. 308, L27–L30.

    Article  ADS  Google Scholar 

  • Podosek, F.A., Ott, U., Brannon, J.C., Neal, C.R., Bernatowicz, T.J., Swan, P., and Mahan, S.E.: 1997, ‘Thoroughly Anomalous Chromium in Orgueil’, Meteoritics and Planet. Sci. 32, 617–627.

    Article  ADS  Google Scholar 

  • Rotaru, M., Birck, J.-L., and Allegre, C.J.: 1992, ‘Clues to Early Solar System History From Chromium Isotopes in Carbonaceous Chondrites’, Nature 358, 465–470.

    Article  ADS  Google Scholar 

  • Russel, S.S., Srinivasan, G., Huss, G.R., Wasserburg, G.J., and MacPherson, G.J.: 1996, ‘Evidence for Widespread26 Al in the Solar Nebula and Constraints for Nebula Time Scales’, Science 273, 757.

    Article  ADS  Google Scholar 

  • Shu, F. H., Shang, H., and Lee, T.: 1996, ‘Toward an Astrophysical Theory of Chondrites’, Science 271, 1545–1552.

    Article  ADS  Google Scholar 

  • Shukolyukov, A., and Lugmair, G.W.: 1998a, ‘Isotopic Evidence for the Cretaceous-Tertiary Impactor and its Type’, Science 282, 927–929.

    Article  ADS  Google Scholar 

  • Shukolyukov, A., and Lugmair, G. W.: 1998b, ‘The 53Mn-53Cr Isotope System in the Indarch EH4 Chondrite: A Further Argument for 53Mn Heterogeneity in the Early Solar System’, Lunar. Planet Sci. XXIX, abstr. 1280.

    Google Scholar 

  • Shukolyukov, A., and Lugmair, G.W.: 1999, ‘The 53Mn-53Cr Isotope Systematics of the Enstatite Chondrites’, Lunar Planet. Sci. XXX, abstr. 1093.

    ADS  Google Scholar 

  • Srinivasan, G., Russel, S.S., MacPherson, G.J., Huss, G.R., and Wasserburg, G.J.: 1996, ‘New Evidence for 26Al in CAI’s and Chondrules From Type 3 Ordinary Chondrites’, Lunar. Planet. Sci. XXVII, 1257–1258.

    ADS  Google Scholar 

  • Tscharnuter, W.M., and Boss, A.P.: 1993, ‘Formation of the Protosolar Nebula’, in E.H. Levy and J. I. Lunine (eds.), Protostars and Planets II, UAP, pp. 921–938.

    Google Scholar 

  • Wadhwa, M., Shukolyukov, A., and Lugmair, G. W.: 1996, ‘53Mn-53Cr Systematics in Brachina: A Record of one of the Earliest Phases of Igneous Activity on an Asteroid’, Lunar. Planet. Sci. XXIX, abstr. 1480.

    Google Scholar 

  • Wänke, H.: 1981, ‘Constitution of Terrestrial Planets’, Phil. Trans. R. Soc. Lond. A 303, 287–302.

    Article  ADS  Google Scholar 

  • Wänke, H., and Dreibus, G.: 1988, ‘Chemical Composition and Accretion History of Terrestrial Planets’, Phil. Trans. R. Soc. Lond. A 325, 545–557.

    Article  ADS  Google Scholar 

  • Wänke, H., and Dreibus, G.: 1997, ‘New Evidence for Silicon as the Major Light Element in the Earth’s Core’, Lunar. Planet. Sci. XXVIII, 1495–1496.

    Google Scholar 

  • Weidenschilling, S. J.: 1977, ‘Aerodynamics of Solid Bodies in the Solar Nebula’, Mon. Not. Roy. Astron. Soc. 180, 57–70.

    ADS  Google Scholar 

  • Wetherill, G. W., and Chambers, J. E.: 1997, ‘Numerical Integration Study of Primordial Clearing of the Asteroid Belt’, Lunar Planet. Sci. Conf. XXVIII, 1547–1548.

    ADS  Google Scholar 

  • Wood, J. A.: 1996, ‘Thermal Processing in the Solar Nebula: Constraints From Refractory Conclusions’, in R. Hewins (ed.), Chondrules and the Protoplanetary Nebula, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Zipfel, J., Shukolyukov, A., and Lugmair, G. W.: 1996, ‘Manganese-chromium Systematics in the Acapulco Meteorite’, Meteoritics Planet. Sci. 31, abstr. A160.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Shukolyukov, A., Lugmair, G.W. (2000). On the 53Mn Heterogeneity in the Early Solar System. In: Benz, W., Kallenbach, R., Lugmair, G.W. (eds) From Dust to Terrestrial Planets. Space Sciences Series of ISSI, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4146-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4146-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5807-0

  • Online ISBN: 978-94-011-4146-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics