Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 555))

  • 176 Accesses

Abstract

Symmetries are one of the most fundamental concepts for understanding the laws of nature leading to conserving quantities. Unexpected violations of symmetries indicate some dynamical mechanism beyond the current understanding of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. S. Wu et al., Phys. Rev. 105 (1957) 1413.

    Article  ADS  Google Scholar 

  2. R.L Garwin et al., Phys. Rev. 105 (1957) 1415

    Article  ADS  Google Scholar 

  3. J. I. Friedman and V. L. Telegdi, Phys. Rev. 105 (1957) 1681.

    Article  ADS  Google Scholar 

  4. M. Gell-Mann and R. P. Feynmann, Phys. Rev. 109 (1958) 193

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. E. C. G. Sudarshan and R. E. Marshak, Phys. Rev. 109 (1958) 1860

    Article  ADS  Google Scholar 

  6. J. Sakurai, Nuovo Cim. 7 (1958) 649.

    Article  Google Scholar 

  7. J. H. Christenson et al., Phys Rev. Lett. 13 (1964) 138.

    Article  ADS  Google Scholar 

  8. N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531

    Article  ADS  Google Scholar 

  9. M. Kobayashi and K. Maskawa, Prog. Theor. Phys. 49 (1972) 282.

    Article  Google Scholar 

  10. A.D. Sakharov, JETP Lett. 6 (1967) 21.

    Google Scholar 

  11. See for example M.B. Gavela et al., Modern Phys. Lett. 9A (1994) 795.

    Article  ADS  Google Scholar 

  12. V. Weisskopf and E. Wigner, Z. fúr Physik, 63 (1930) 54.

    Article  ADS  MATH  Google Scholar 

  13. For pioneering works see

    Google Scholar 

  14. A. Pais and S. B. Treiman, Phys. Rev. D12 (1975) 2744

    ADS  Google Scholar 

  15. L. B. Okun et al, Lett. Nuovo Cimento 13 (1975) 218

    Article  Google Scholar 

  16. M. Bander et al, Phys. Rev. Lett. 43 (1979) 242

    Article  ADS  Google Scholar 

  17. A. B. Carter and A. I. Sanda, Phys. Rev. D23 (1981) 1567

    ADS  Google Scholar 

  18. I. I. Bigi and A. I. Sanda, Nucl. Phys. B193 (1981) 85.

    Article  ADS  Google Scholar 

  19. More details can be found in

    Google Scholar 

  20. T. Nakada, CP Violation in K- and B-Meson Decays, PSI-PR-91–02, 1991.

    Google Scholar 

  21. G. Luders, Dan. Mat. Fys. Medd. 28 No5 (1954)

    MathSciNet  Google Scholar 

  22. W. Pauli, In Niels Bohr and the development of physics, ed. W. Pauli, pp. 30, New York, Pergamon Press, 1995

    Google Scholar 

  23. R. Jost, Hely. Phys. Acta, 30 (1975) 409

    MathSciNet  Google Scholar 

  24. G. Lüder, Annals of Physics 2 (1957) 1.

    Article  MathSciNet  Google Scholar 

  25. C. Caso et al, The European Physical Journal C3 (1998) 1 and 1999 off-year partial update for the 2000 edition available on the PDG WWW pages (URL: http://pdg.lbl.gov/)

  26. A. Angelopoulos et al. [CPLEAR Collaboration], Phys. Lett. B444 (1998) 43.

    ADS  Google Scholar 

  27. A. Apostolakis et al. [CPLEAR Collaboration], Phys. Lett. B458 (1999) 545.

    ADS  Google Scholar 

  28. W. Ochs, MPI-Ph/Ph 91–35, (1991).

    Google Scholar 

  29. G. D. Barr et al. [NA31 Collaboration], system,“ Phys. Lett. B317 (1993) 233.

    ADS  Google Scholar 

  30. L. K. Gibbons et al., epsilon),“ Phys. Rev. Lett. 70 (1993) 1203.

    Article  ADS  Google Scholar 

  31. A. Alavi-Harati et al. [KTeV Collaboration], Phys. Rev. Lett. 83 (1999) 22.

    Article  ADS  Google Scholar 

  32. V. Fanti et al. [NA48 Collaboration], neutral kaon,“ Phys. Lett. B465 (1999) 335.

    ADS  Google Scholar 

  33. For details of the Standard Model description of the K and B system and further references, see the following articles:

    Google Scholar 

  34. A. J. Buras, Weak Hamiltonian, CP violation and rare decays, hep-ph/9806471

    Google Scholar 

  35. A. J. Buras, CP violation and rare decays of K and B mesons, hep-ph/9905437.

    Google Scholar 

  36. L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945.

    Article  ADS  Google Scholar 

  37. A. Alavi-Harati et al. [The E799-II/KTeV Collaboration], gamma,“ hep-ex/9907014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nakada, T. (2000). Physics of CP Violation and Rare Decays. In: Aubert, JJ., Gastmans, R., Gérard, JM. (eds) Particle Physics: Ideas and Recent Developments. NATO Science Series, vol 555. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4128-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4128-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6436-8

  • Online ISBN: 978-94-011-4128-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics