Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 554))

  • 173 Accesses

Abstract

With the advent of the basic theory of strong interactions, quantum chromodynamics (QCD), has come the conviction that nucleons - and more generally, all strongly interacting elementary particles (hadrons) - are bound states of quarks. Quarks are point-like and confined to “their” hadron by a binding potential V o(r) which increases linearly with quark separation r,

$${V_0}(r) \sim \sigma r,$$
(1)

where the string tension δ measures the energy per unit separation distance. Hence an infinite amount of energy would be needed to isolate a quark; it cannot exist by itself, and it is therefore not possible to split an isolated hadron into its quark constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.F. Mott, Proc. Phys. Soc. (London) A62 (1949) 416.

    Article  ADS  Google Scholar 

  2. V.V. Dixit, Mod. Phys. Lett. A5 (1990) 227.

    Google Scholar 

  3. H.Satz, Nucl. Phys. A418 (1984) 447c.

    Google Scholar 

  4. D. Bailin and A. Love, Phys. Rep. 107 (1984) 325; for a recent survey, see F. Karsch and M.P. Lombardo (Eds.), QCD at Finite Baryon Density, Nucl. Phys. A642 (1998).

    Google Scholar 

  5. M. Asakawa and T. Hatsuda, Nucl. Phys. A610 (1996) 470c.

    ADS  Google Scholar 

  6. K.G. Wilson, Phys. Rev. D10 (1974) 2445.

    ADS  Google Scholar 

  7. M. Creutz, Phys. Rev. D21 (1980) 2308.

    MathSciNet  ADS  Google Scholar 

  8. F. Karsch and E. Laermann, Rep. Prog. Phys. 56 (1993) 1347.

    Article  ADS  Google Scholar 

  9. L.D. McLerran and B. Svetitsky, Phys. Lett. 98B (1981) 195 and Phys. Rev. D24 (1981) 450.

    Google Scholar 

  10. J. Kuti, J. Polónyi and K. Szlachányi, Phys. Lett. 98B (1981) 199.

    ADS  Google Scholar 

  11. F. Karsch and E. Laermann, Phys. Rev. D50 (1994) 6954.

    ADS  Google Scholar 

  12. T. Blum et al., Phys. Rev. D51 (1995) 5153.

    ADS  Google Scholar 

  13. J. Engels et al., Z. Phys. C42 (1989) 341.

    Google Scholar 

  14. V. Goloviznin and H. Satz, Z. Phys. C57 (1993) 671.

    ADS  Google Scholar 

  15. F. Karsch, A. Patkos and P. Petreczky, Phys. Lett. B401 (1997) 69.

    ADS  Google Scholar 

  16. B. Svetitsky and L.G. Yaffe, Nucl. Phys. B210 [F561 (1982) 423.

    Google Scholar 

  17. P. Hasenfratz, F. Karsch and I.O. Stamatescu, Phys. Rev. 133B (1983) 221.

    Google Scholar 

  18. R.V. Gavai, A. Goksch and M. Ogilvie, Phys. Rev. Lett. 56 (1986) 815.

    Article  ADS  Google Scholar 

  19. M. Ogilvie, Phys. Lett. B231 (1989) 161.

    ADS  Google Scholar 

  20. H. Satz, Nucl. Phys. A642 (1998) 130c.

    Google Scholar 

  21. G. Baym, Physica 96A (1979) 131.

    ADS  Google Scholar 

  22. T. Çelik, F. Karsch and H. Satz, Phys. Lett. 97B (1980) 128.

    ADS  Google Scholar 

  23. For a recent survey, see D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor & Francis, London 1994.

    Google Scholar 

  24. U. Alon, A. Drory and I. Balberg, Phys. Rev. A42 (1990) 4634.

    ADS  Google Scholar 

  25. Alvarez, Phys. Rev. D24 (1981) 440.

    ADS  Google Scholar 

  26. For recent precision studies, see G. Bali, K. Schilling and C. Schlichter, Phys. Rev. 51 (1995) 5165 and Nucl. Phys. B (Proc. Supp.) 42 (1995) 273.

    Google Scholar 

  27. E.J. Garboczi et al., Phys. Rev. E52 (1995) 819.

    ADS  Google Scholar 

  28. H. Satz, hep-ph/9908339;

    Google Scholar 

  29. S. Fortunato and H. Satz, hep-lat/9908033

    Google Scholar 

  30. S. Fortunato and H. Satz, in preparation;

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Satz, H. (2000). The Quark-Gluon Plasma. In: Kittel, W., Mulders, P.J., Scholten, O. (eds) Particle Production Spanning MeV and TeV Energies. NATO Science Series, vol 554. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4126-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4126-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6432-0

  • Online ISBN: 978-94-011-4126-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics