Skip to main content

Part of the book series: NATO Science Series ((ASDT,volume 31))

  • 169 Accesses

Abstract

There is a long-standing interest in the reconstruction of radiation doses received by populations from the testing of nuclear weapons or from the release of radionuclides associated with the production of special nuclear materials. These ongoing methods of dose reconstruction have evolved over time and have been quite successful in supporting epidemiologic studies and in examining issues related to social justice. Methods of dose reconstruction vary from the analysis of a sample from the exposed individual to the analysis of a sample from the individual’s home, the analysis of environmental residues (such as long-lived radionuclides), or to simpler calculations that are highly dependent upon models. The more reliable methods for reconstructing doses from nuclear weapons tests have focused on using historical measurements of external gamma-exposure rate and on historical or contemporary measurements of the deposition density of long-lived radionuclides. This paper describes in detail the general method of dose reconstruction used in the U.S.A. for doses to residents near the Nevada Test Site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anspaugh, L.R. (1996) Technical basis for dose reconstruction, in Environmental Dose Reconstruction and Risk Implications, National Council on Radiation Protection and Measurements, Bethesda, pp. 25–48.

    Google Scholar 

  2. Anspaugh, L.R. (1999) Overview on existing approaches to dose reconstruction-Recommendations for the Ukrainian-American Chernobyl Ocular Study (UACOS) in Ocular Radiation Risk Assessment in Populations Exposed to Environmental Radiation Contamination, Kluwer Academic Publishers, Boston, pp. 89–98.

    Google Scholar 

  3. Arakawa, E.T. (1960) Radiation dosimetry in Hiroshima and Nagasaki atomic-bomb survivors, New Engl. J. Med. 263, 488–493.

    Article  CAS  Google Scholar 

  4. Auxier, J.A. (1977) ICHIBAN: Radiation Dosimetry for the Survivors of the Bombings of Hiroshima and Nagasaki, U.S. Department of Energy, Washington.

    Google Scholar 

  5. Milton, R.C. and Shohoji, T. (1969) Tentative 1965 Radiation Dose Estimation for Atomic Bomb Survivors, Radiation Effects Research Foundation, Hiroshima, Technical Report 1–68,1968.

    Google Scholar 

  6. Auxier, J.A. (1982) Development of the dosimetric program, T65D values, in Reevaluations of Dosimetric Factors: Hiroshima and Nagasaki, U.S. Department of Energy, Washington, CONF810928, pp. 6–24.

    Google Scholar 

  7. Roesch, W.C. (ed.) (1987) US-Japan Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki, Radiation Effects Research Foundation, Hiroshima.

    Google Scholar 

  8. Straume, T., Egbert, S.D., Woolson, W.A., Finkel, R.C., Kubik, P.W., Gove, H.E., Sharma, P. and Hoshi, M. (1992) Neutron discrepancies in the DS86 Hiroshima Dosimetry System, Health Phys. 63, 421–426.

    Article  CAS  Google Scholar 

  9. Henderson, R.W. and Smale, R.F. (1990) External exposure estimates for individuals near the Nevada Test Site, Health Phys. 59, 715–721.

    Article  CAS  Google Scholar 

  10. Ng, Y.C., Anspaugh, L.R. and Cederwall, R.T. (1990) ORERP internal dose estimates for individuals, Health Phys. 59, 693–713.

    Article  CAS  Google Scholar 

  11. National Cancer Institute (1997) Estimated Exposures and Thyroid Doses Received by the American People from Iodine-131 in Fallout Following Nevada Atmospheric Nuclear Bomb Tests, U.S. Department of Health and Human Services, Washington.

    Google Scholar 

  12. Henderson, R.W. and Smale, R.F. (1992) Summary of Collective Dose from External Exposure, Los Alamos National Laboratory, Los Alamos, Report submitted to the Co-ordination and Information Centre, Las Vegas.

    Google Scholar 

  13. Whicker, F.W., Kirchner, T.B., Anspaugh, L.R. and Ng, Y.C. (1996) Ingestion of Nevada Test Site fallout: Internal dose estimates, Health Phys. 71, 477–486.

    Article  CAS  Google Scholar 

  14. Simon, S.L., Till, J.E., Lloyd, R.D., Kerber, R.L., Thomas, D.C., Preston-Martin, S., Lyon, J.L. and Stevens, W. (1995) The Utah leukemia case-control study: Dosimetry methodology and results, Health Phys. 68, 460–471.

    Article  CAS  Google Scholar 

  15. Till, I.E., Simon, S.L., Kerber, R., Lloyd, R.D., Stevens, W., Thomas, D.C., Lyon, J.L. and Preston-Martin, S. (1995) The Utah thyroid-cohort study: Analysis of the dosimetry results, Health Phys. 68, 472–483.

    Article  CAS  Google Scholar 

  16. Farris, W.T., Napier, B.A., Ikenberry, T.A., Simpson, J.C. and Shipler, D.A. (1994) Atmospheric Pathway Dosimetry Report, 1944–1992, Pacific Northwest Laboratories, Richland, WA, PNWD2228 HEDR.

    Google Scholar 

  17. Farris, W.T., Napier, B.A., Simpson, J.C., Snyder, S.F. and Shipler, D.A. (1994) Columbia River Pathway Dosimetry Report, 1944–1992, Pacific Northwest Laboratories, Richland, WA, PNWD2227 HEDR.

    Book  Google Scholar 

  18. Farris, W.T., Napier, B.A., Ikenberry, T.A. and Shipler, D.B. (1996) Radiation doses from Hanford Site releases to the atmosphere and the Columbia River, Health Phys. 71, 588–601.

    Article  CAS  Google Scholar 

  19. Davis, S., Kopecky, K.J., Hamilton, T.E. and Amundson, B. (1999) Summary Final Report of the Hanford Thyroid Disease Study, Fred Hutchinson Cancer Research Center, Seattle, WA.

    Google Scholar 

  20. Miller, C.W., Smith, J.M. and Denham, L.S. (1994) Dose reconstruction studies at selected nuclear weapons facilities in the USA, in Assessing the Radiological Impact of Past Nuclear Activities and Events, International Atomic Energy Agency, Vienna, IAEA-TECDOC-755, pp. 79–85.

    Google Scholar 

  21. Balonov, M.I. (1996) Chernobyl dose for population of areas radiocontaminated after the Chernobyl accident, in Environmental Dose Reconstruction and Risk Implications, National Council on Radiation Protection and Measurements, Bethesda, pp. 207–243.

    Google Scholar 

  22. Likhtariov, I., Kovgan, L., Novak, D., Vavilov, S., Jacob, P. and Paretzke, H.G. (1996) Effective doses due to external irradiation from the Chernobyl accident for different population groups of Ukraine, Health Phys. 70, 87–98.

    Article  CAS  Google Scholar 

  23. Likhtarev, I.A., Kovgan, L.N., Vavilov, S.E., Gluvchinsky, R.R., Perevoznikov, O.N., Litvinets, L.N., Anspaugh, L.R., Kercher, J.R. and Bouville, A. (1996) Internal exposure from the ingestion of foods contaminated by 137Cs after the Chernobyl accident, Health Phys. 70, 297–317.

    Article  CAS  Google Scholar 

  24. Karaoglou, A., Desmet, G., Kelly, G.N. and Menzel, H.G. (1996) The Radiological Consequences of the Chernobyl Accident, European Commission, Luxembourg, EUR-16544.

    Google Scholar 

  25. European Commission, International Atomic Energy Agency, and World Health Organization (1996) One Decade after Chernobyl: Summing Up the Consequences of the Accident, International Atomic Energy Agency, Vienna.

    Google Scholar 

  26. Nuclear Energy Agency (1996) Chernobyl Ten Years On-Radiological and Health Impact, Organization for Economic Cooperation and Development, Paris.

    Google Scholar 

  27. Burkhart, W. and Kellerer, A.M. (1994) Radiation exposure in the Southern Urals, Sci. Total Environ. 142, Nos. 1–2.

    Article  Google Scholar 

  28. Degteva, M.O. (1996) Environmental dose reconstruction for the Urals population, in Environmental Dose Reconstruction and Risk Implications, National Council on Radiation Protection and Measurements, Bethesda, pp. 155–169.

    Google Scholar 

  29. Degteva, M.O., Kozheurov, V.P., Burmistrov, D.S., Vorobyova, M.I., Valchuk, V.V., Bougrov, N.G. and Shishkina, H.A. (1996) An approach to dose reconstruction for the Urals population, Health Phys. 71, 71–76.

    Article  CAS  Google Scholar 

  30. Degteva, M.O., Kozheurov, V.P., Vorobiova, M.I., Burmistrov, D.S., Khokhryakov, V.V., Suslova, K.G., Anspaugh, L.R., Napier, B.A. and Bouville, A. (1997) Population exposure dose reconstruction for the Urals Region, in Assessing Health and Environmental Risks from Long-Term Radiation Contamination in Chelyabinsk, Russia, American Association for the Advancement of Science, Washington, pp. 21–33.

    Google Scholar 

  31. Straume, T., Anspaugh, L.R., Haskell, E.H., Lucas, J.N., Marchetti, A.A., Likhtarev, I.A., Chumak, V.V., Romanyukha, A.A., Khrouch, V.T., Gavrilin, Yu.l. and Minenko, V.F. (1997) Emerging technological bases for retrospective dosimetry, Stem Cells 15(Suppl. 2), 183–193.

    Google Scholar 

  32. National Research Council (1995) Radiation Dose Reconstruction for Epidemiologic Uses, National Academy Press, Washington.

    Google Scholar 

  33. Kozheurov, V.P. (1994) SICH-9.1-a unique whole-body counting system for measuring Sr-90 via bremsstrahlung. The main results from a long-term investigation of the Techa River population, Sci. Total Environ. 142, 37–48.

    Article  CAS  Google Scholar 

  34. Lucas, J.N., Hill, F., Burk, C., Fester, T. and Straume, T. (1995) Dose-response curve for chromosome translocations measured in human lymphocytes exposed to 60Co gamma rays, Health Phys. 68, 761–765.

    Article  CAS  Google Scholar 

  35. Haskell, E.H., Kenner, G.H. and Hayes, R.B. (1995) Electron paramagnetic resonance dosimetry of dentine following removal of organic material, Health Phys. 68, 579–584.

    Article  CAS  Google Scholar 

  36. Gilbert, E.S., Fix, J.J. and Baumgartner, W.V. (1996) An approach to evaluating bias and uncertainty in estimates of external dose obtained from personal dosimeters, Health Phys. 70, 336–345.

    Article  CAS  Google Scholar 

  37. Maruyama, T., Kumamoto, Y., Ichikawa, Y., Nagatomo, T., Hoshi, M., Haskell, E. and Kaipa, P. (1987) Thermoluminescence measurements of gamma rays, in [6], Vol. 1, pp. 143–184.

    Google Scholar 

  38. Haskell, E.H., Bailiff, LK., Kenner, G.H., Kaipa, P.L. and Wrenn, M.E. (1994) Thermoluminescence measurements of gamma-ray doses attributable to fallout from the Nevada Test Site using building bricks as natural dosimeters, Health Phys. 66, 380–391.

    Article  CAS  Google Scholar 

  39. Bougrov, N.G., Vlasov, V.K., Kiryukhin, O.V. and Fatkulbayanova, N.L. (1995) Thermoluminescence measurements of ceramic samples from accidentally polluted territory of Southern Urals, Radiat. Meas. 24, 493–498.

    Article  CAS  Google Scholar 

  40. Bougrov, N.G., Göksu, H.Y., Haskell, E., Degteva, M.O., Meckbach, R. and Jacob, P. (1998) Issues in the reconstruction of environmental doses on the basis of thermoluminescence measurements in the Techa Riverside, Health Phys. 75, 574–583.

    Article  CAS  Google Scholar 

  41. U.N. Scientific Committee on the Effects of Atomic Radiation. (1962) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York, General Assembly, Official Records: Seventeenth Session, Supplement No. 16 (A/5216).

    Google Scholar 

  42. Beck, H.L. (1980) Exposure Rate Conversion Factors for Radionuclides Deposited on the Ground, U.S. Department of Energy Environmental Measurements Laboratory, New York, EML-378.

    Book  Google Scholar 

  43. Eckerman, K.F. and Ryman, J.C. (1993) External Exposure to Radionuclides in Air, Water, and Soil. Federal Guidance Report No. 12. Environmental Protection Agency, Washington, EPA 402-R93–081.

    Google Scholar 

  44. Hicks, H.G. (1990) Additional calculations of radionuclide production following nuclear explosions and Pu isotopic ratios for Nevada Test Site events, Health Phys. 59, 515–523.

    Article  CAS  Google Scholar 

  45. Beck, H.L. and Anspaugh, L.R. (1991) Development of the County Database: Estimates of Exposure Rates and Times of Arrival of Fallout in the ORERP Phase-II Area. Comparison with Cumulative Deposition-Density Estimates Bases on Analyses of Retrospective and Historical Soil Samples, U.S. Department of Energy Nevada Operations Office, Las Vegas, DOE/NV-320.

    Google Scholar 

  46. Straume, T., Marchetti, A.A., Anspaugh, L.R., Khrouch, V.T., Gavrilin, Yu.I., Shinkarev, S.M., Drozdovitch, V.V., Ulanovsky, A.V., Korneev, S.V., Brekeshev, M.K., Leonov, E.S., Voigt, G., Panchenko, S.V. and Minenko, V.F. (1996) The feasibility of using I to reconstruct I deposition from the Chemobyl reactor accident, Health Phys. 71, 733–740.

    Article  CAS  Google Scholar 

  47. Straume, T., Marchetti, A.A. and McAninch, J.E. (1996) New analytical capability may provide solution to the neutron dosimetry problem in Hiroshima, Radiat. Prot. Dosim. 67, 568–582.

    Google Scholar 

  48. WHO (1983) Environmental Health Criteria 25. Selected Radionuclides: Tritium, Carbon-14, Krypton-85, Strontium-90, Iodine, Caesium-137, Radon, Plutonium, World Health Organization, Geneva.

    Google Scholar 

  49. IAEA (1985) The Radiological Impact of Radionuclides Dispersed on a Regional and Global Scale: Methods for Assessment and their Application, International Atomic Energy Agency, Vienna, Technical Reports Series No. 250.

    Google Scholar 

  50. Gordeev, K.I., Kiselev, V.I., Lebedev, A.N. and Savkin, M.N. (1994) Method of retrospective reconstruction of radiological situation determining the internal irradiation upon the trace of nuclear tests, Bull. Semipalatinsk Test Site/Altai No. 1, 57–96 (in Russian).

    Google Scholar 

  51. Gordeev, K.l., Kiselev, V.I., Lebedev, A.N., Savkin, M.N. and Shoikhet, Y.N. (1995) Scientific grounds of models for calculating the doses of external and internal exposure for the population living on the radioactive vestige of nuclear explosion and some recommendations on using these models, Bull. Semipalatinsk Test Site/Altai No. 1, 56–79 (in Russian).

    Google Scholar 

  52. Shoikhet, Y.N., Kiselev, V.I., Loborev, V.M., Sudakov, V.V., Algazin, A.I., Lagutin, A.A., Zaitsev, E.V., Kolyado, I.B., Zelenov, V.I., Gabbasov, M.N. and Goncharov, A.I. (1999) Nuclear Tests at the Semipalatinsk Test Site. Radiation Impact on the Altai Region Population, Institute of Regional Medico-Ecological Problems, Bamaul, Russia.

    Google Scholar 

  53. Cederwall, R.T. and Peterson, K.R. (1990) Meteorological modeling of arrival and deposition of fallout at intermediate distances downwind of the Nevada Test Site, Health Phys. 59, 593–601.

    Article  CAS  Google Scholar 

  54. Takada, J., Hoshi, M., Endo, S., Yamamoto, M., Nagatomo, T., Gusev, B.I., Rozenson, R.I., Apsalikov, K.N. and Tchaijunusova, N.J. (1996) Thermoluminescence dosimetry of gamma rays from the fallout of the Semipalatinsk nuclear testsin Effects of Low-Level Radiation for Residents near Semipalatinsk Nuclear Test Site, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan, pp. 195–199.

    Google Scholar 

  55. Hicks, H.G. (1981) Radiochemical Data Collected on Events from which Radioactivity Escaped Beyond the Borders of the Nevada Test Range Complex, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-52934.

    Book  Google Scholar 

  56. Hicks, H.G. (1982) Calculation of the concentration of any radionuclide deposited on the ground by offsite fallout from a nuclear detonation, Health Phys. 42, 585–600.

    Article  CAS  Google Scholar 

  57. Anspaugh, L.R. and Church, B.W. (1985) Historical estimates of external gamma exposure and collective external gamma exposure from testing at the Nevada Test Site. I. Test series through Hardtack II, 1958, HealthPhys. 51, 35–51.

    Google Scholar 

  58. Henderson, R.W. (1991) Approximation of the Decay of Fission and Activation Product Mixtures, Los Alamos National Laboratory, Los Alamos, NM, LA-11968-MS.

    Google Scholar 

  59. Kirchner, T.B., Whicker, F.W., Anspaugh, L.R. and Ng, Y.C. (1996) Estimating internal dose due to ingestion of radionuclides from Nevada Test Site fallout, Health Phys. 71, 487–501.

    Article  CAS  Google Scholar 

  60. International Commission on Radiological Protection (1998) The ICRP Database of Dose Coefficients: Workers and Members of the Public, Elsevier Science, New York, ISBN 0 08 042 7510.

    Google Scholar 

  61. Whicker, F.W. and Kirchner, T.B. (1987) PATHWAY: A dynamic food-chain model to predict radionuclide ingestion after fallout deposition, Health Phys. 52, 717–737.

    Article  CAS  Google Scholar 

  62. Ward, G.M. and Whicker, F.W. (1990) Milk distribution and feeding practice data for the PATHWAY model, Health Phys. 59, 637–643.

    Article  CAS  Google Scholar 

  63. Whicker, F.W., Kirchner, T.B., Breshears, D.D. and Otis, M.D. (1990) Estimation of radionuclide ingestion: The “PATHWAY” food-chain model, Health Phys. 59, 645–657.

    Article  CAS  Google Scholar 

  64. Breshears, D.D., Kirchner, T.B., Otis, M.D. and Whicker, F.W. (1989) Uncertainty in predictions of fallout radionuclides in foods and of subsequent ingestion, Health Phys. 57, 943–953.

    Article  CAS  Google Scholar 

  65. Simon, S.L., Lloyd, R.D., Till, J.E., Hawthome, H.A., Gren, D.C., Rallison, M.L. and Stevens, W. (1990) Development of a method to estimate thyroid dose from fallout radioiodine in a cohort study, Health Phys. 59, 669–691.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anspaugh, L.R. (2000). Technical Basis of Dose Reconstruction. In: Hecker, S.S., Mason, C.F.V., Kadyrzhanov, K.K., Kislitsin, S.B. (eds) Nuclear Physical Methods in Radioecological Investigations of Nuclear Test Sites. NATO Science Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4116-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4116-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6448-1

  • Online ISBN: 978-94-011-4116-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics