Skip to main content

Non-Equilibrium Phase Transitions in Condensed Matter and Cosmology: Spinodal Decomposition, Condensates and Defects

  • Chapter
Book cover Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions

Part of the book series: NATO Science Series ((ASIC,volume 549))

Abstract

These lectures address the dynamics of phase ordering out of equilibrium in condensed matter and in quantum field theory in cosmological settings, emphasizing their similarities and differences. In condensed matter we describe the phenomenological approach based on the Time Dependent Ginzburg-Landau (TDGL) description. We study the exact solution to the dynamics after a quench in this limit in Minkowski space time and in radiation dominated Friedman-Robertson-Walker Cosmology. There are some remarkable similarities between these very different settings such as the emergence of a scaling regime and of a dynamical correlation length at late times that describe the formation and growth of ordered regions. In quantum field theory and cosmology this length scale is constrained by causality and its growth in time is also associated with coarsening and the onset of a condensate. We provide a density matrix interpretation of the formation of defects and the classicalization of quantum fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kibble, T. W. B., Topology of Cosmic Domains and Strings, J. Phys. A 9, 1387 (1976), and contribution to these proceedings.

    Google Scholar 

  2. Hindmarsh, M. B. and Kibble, T.W.B., Cosmic Strings, Rep. Prog. Phys. 58:477 (1995).

    Google Scholar 

  3. For a classification of topological defects in terms of the underlying group structure see T. Kibble’s contribution to these proceedings.

    Google Scholar 

  4. Vilenkin, A. and Shellard, E.P.S, Cosmic Strings and other Topological Defects, Cambridge Monographs on Math. Phys. (Cambridge Univ. Press, 1994).

    Google Scholar 

  5. For a comprehensive review of the status of theory and experiment see: Proceedings of the ‘D. Chalonge’ School in Astrofundamental Physics at Erice, edited by N. Sánchez and A. Zichichi, 1996 World Scientific publisher and 1997, Kluwer Academic publishers. In particular the contributions by G. Smoot, A. N. Lasenby and A. Szalay., Durrer, R., Kunz, M. and Melchiorri, A. Cosmic Microwave Background Anisotropies from Scaling Seeds: Global Defect Models Phys.Rev. D59 (1999) 123005, Kunz M. and Durrer R. Microwave Background Anisotropies Induced by Global Scalar Fields: The Large N Limit, Phys. Rev. D55, 4516 (1997) and R. Durrer’s lectures in these proceedings.

    Google Scholar 

  6. See for example: Rajagopal, K. in ‘Quark Gluon Plasma 2’, (Ed. R. C. Hwa, World Scientific, 1995).

    Google Scholar 

  7. Bray, A. J., Theory of Phase Ordering Kinetics Adv. Phys. 43, 357 (1994).

    Google Scholar 

  8. Langer, J. S. in’ solids far from Equilibrium’, Ed. C. Godrèche, (Cambridge Univ. Press 1992); Langer, J. S. in ‘Far from Equilibrium Phase Transitions’, Ed. L. Garrido, (Springer-Verlag, 1988); Langer, J. S. in ‘Fluctuations, Instabilities and Phase Transitions’, Ed. T. Riste, Nato Advanced Study Institute, Geilo Norway, 1975 (Plenum, 1975).

    Google Scholar 

  9. Mazenko, G. in ‘Far from Equilibrium Phase Transitions’, Ed. L. Garrido, (Springer-Verlag, 1988).

    Google Scholar 

  10. Castellano, C. and Zannetti, M., Overall time evolution in phase-ordering kinetics cond-mat/9807242; Castellano, C., Corberi, F. and Zannetti, M. Condensation vs. phase-ordering in the dynamics of first order transitions Phys. Rev. E56, 4973 (1997); F. Corberi, A. Coniglio and M. Zannetti, Early stage scaling in phase ordering kinetics Phys. Rev. E51, 5469 (1995).

    Google Scholar 

  11. Zurek, W. H., Nature 317, 505 (1985); Acta Physica Polonica B24, 1301 1993); Cosmological Experiments in Condensed Matter Systems, Phys. Rep. 276, (1996), see also W. H. Zurek’s contribution to these proceedings.

    Google Scholar 

  12. Goldburg, W. I. and Huang, J. S., in ‘Fluctuations, Instabilities and Phase Transitions’, Ed. Riste, T., Nato Advanced Study Institute, Geilo Norway, 1975 (Plenum, 1975); Huang, J. S., Goldburg, W. I. and Moldover, M. R., Phys. Rev. Lett. 34, 639 (1975).

    Google Scholar 

  13. Turok, N. and Spergel, D. N., Scaling Solution for Cosmological σ models at Large N, Phys. Rev. Lett. 66, 3093 (1991); Spergel, D.N, Turok, N., Press, W. H. and Ryden, B. S., Global texture as the origin of large-scale structure: Numerical simulations of evolution Phys. Rev. D43, 1038 (1991).

    Google Scholar 

  14. Filipe J. A. N. and Bray A. J., Phase ordering dynamics of cosmological models, Phys. Rev. E50, 2523 (1994); J. A. N. Filipe, (Ph. D. Thesis, 1994, unpublished).

    Google Scholar 

  15. D. Boyanovsky, H. J. de Vega and R. Holman, Nonequilibrium evolution of scalar fields in FRW cosmologies, Phys. Rev. D 49, 2769 (1994); D. Boyanovsky, D. Cormier, H. J. de Vega, R. Holman and S. Prem Kumar, Nonperturbative quantum dynamics of a new inflation model Phys. Rev. D57, 2166, (1998), (and references therein).

    Google Scholar 

  16. Boyanovsky, D., de Vega, H. J., Holman, R., Lee, D.-S., and Singh, A. Dissipation via particle production in scalar field theories, Phys. Rev. D51, 4419 (1995). Boyanovsky, D., de Vega H. J. and Holman, R., in the Proceedings of the Second Paris Cosmology Colloquium, Observatoire de Paris, June 1994, pp. 127-215, H. J. de Vega and N. Sánchez, Editors (World Scientific, 1995); Advances in Astrofundamental Physics, Erice Chalonge School, N. Sánchez and A. Zichichi Editors, (World Scientific, 1995). Boyanovsky, D., de Vega, H. J., Holman, R., and Salgado, J., Phys. Rev. D54, 7570 (1996); Boyanovsky, D., Cormier, D., de Vega, H. J., Holman, R., Singh, A., and Srednicki, M., Phys. Rev. D56 (1997) 1939. Boyanovsky D., de Vega, H. J. and Holman, R. in Vth. Erice Chalonge School, Current Topics in Astrofundamental Physics, N. Sánchez and A. Zichichi Editors, World Scientific, 1996, p. 183-270. Boyanovsky, D., D’Attanasio, M., de Vega, H. J., Holman, R. and Lee, D.-S., Linear versus nonlinear relaxation: Consequences for reheating and thermalization Phys. Rev. D52, 6805 (1995). Boyanovsky, D., Destri, C., de Vega, H. J., Holman, R. and Salgado, J., Asymptotic dynamics in scalar field theory: Anomalous relaxation Phys. Rev. D57, 7388 (1998).

    Google Scholar 

  17. Boyanovsky, D., de Vega, H. J., Holman R. and Salgado, J., Non-Equilibrium Bose-Einstein Condensates, Dynamical Scaling and Symmetric Evolution in large N Phi4 theory, Phys. Rev. D59 125009 (1999).

    Google Scholar 

  18. Cooper, F., Habib, S., Kluger, Y., and Mottola, E. Nonequilibrium dynamics of symmetry breaking in lambda Phi 4 theory, Phys.Rev. D55 (1997), 6471; Cooper F., Habib, S., Kluger, Y., Mottola, E., Paz, J.P., and Anderson, P., Nonequilibrium quantum fields in the large-N expansion Phys. Rev. D50, 2848 (1994). Cooper F., Kluger, Y., Mottola, E. and Paz, J. P., Quantum evolution of disoriented chiral condensates, Phys. Rev. D51, 2377 (1995); Cooper, F., and Mottola, E., Initialvalue problems in quantum field theory in the large-N approximation, Phys. Rev. D36, 3114 (1987); Cooper, F., Pi, S.-Y., and Stancioff, P.N., Quantum dynamics in a time-dependent variational approximation Phys. Rev. D34, 3831 (1986).

    Google Scholar 

  19. Boyanovsky, D., de Vega, H.J. Dynamics of Symmetry Breaking Phase Transitions in FRW Cosmologies in preparation.

    Google Scholar 

  20. Cugliandolo, L.F., and Dean, D.S., Full dynamical solution for a spherical spin-glass model J. Phys. A28, 4213 (1995); On the dynamics of a spherical spin-glass; ibid L453, (1995); Cugliandolo, L.F., Kurchan, J., Parisi, G., Off equilibrium dynamics and aging in unfrustrated systems, J. Physique (France) 4, 1641 (1994).

    Google Scholar 

  21. Relaxing the assumption of an instantaneous quench and allowing for a time dependence of the cooling mechanism has been recently studied by Bowick, M., Momen, A., Domain Formation in Finite-Time Quenches Phys.Rev. D58 (1998) 085014.

    Google Scholar 

  22. Weinberg, E.J., and Wu, A., Understanding complex perturbative effective potentials Phys. Rev. D36, 2474 (1987); Guth, A., and Pi, S.-Y., Quantum mechanics of the scalar field in the new inflationary universe, Phys. Rev. D32, 1899 (1985).

    Google Scholar 

  23. Boyanovsky, D. and de Vega, H. J., Quantum rolling down out of equilibrium, Phys. Rev. D47, 2343 (1993); Boyanovsky, D., Quantum Spinodal Decomposition, Phys. Rev. E48, 767 (1993).

    Google Scholar 

  24. Boyanovsky, D., Lee, D.S., and Singh, A., Phase transitions out of equilibrium: Domain formation and growth, Phys. Rev. D48, 800 (1993).

    Google Scholar 

  25. Karra, G. and Rivers, R.J., Initial Vortex Densities after a Temperature Quench, Phys.Lett. B414 (1997), 28; Rivers, R.J., in 3rd. Colloque Cosmologie, Observatoire de Paris, June 1995, p. 341 in the Proceedings edited by H J de Vega and N. Sánchez, World Scientific. Gill, A.J., and Rivers, R.J., Dynamics of vortex and monopole production by quench-induced phase separation, Phys.Rev. D51 (1995), 6949; Cheetham, G.J., Copeland, E.J., Evans, T.S. and Rivers, R.J., Role of quantum fluctuations in defect-dominated transitions Phys.Rev. D47 (1993),5316.

    Google Scholar 

  26. Stephens, G.J., Calzetta, E. A., Hu, B.L., and Ramsey, S. A., Defect Formation and Critical Dynamics in the Early Universe, gr-qc/9808059 (1998); Ibaceta, D., and Calzetta, E.A., Counting Defects in an Instantaneous Quench hep-ph/9810301 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boyanovsky, D., De Vega, H..., Holman, R. (2000). Non-Equilibrium Phase Transitions in Condensed Matter and Cosmology: Spinodal Decomposition, Condensates and Defects. In: Bunkov, Y.M., Godfrin, H. (eds) Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions. NATO Science Series, vol 549. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4106-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4106-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6205-0

  • Online ISBN: 978-94-011-4106-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics