Skip to main content

Thorium Phosphates as Matrices for Radionuclide Immobilisation

  • Chapter
The Environmental Challenges of Nuclear Disarmament

Part of the book series: NATO Science Series ((ASDT,volume 29))

Abstract

In the framework of the long-term repository of radwastes, host matrices that are very resistant to water corrosion, that have high thermal stability, and that are resistant to α,β,γ self-irradiation are needed. To immobilise the radionuclides, especially those with a long decay period, some ceramic matrices like monazite [1], zircon [2], Synroc [3], zirconium phosphate [4], or pyrochlores [5] have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sales, B.C., White, W.B. and Boatner, L.A. (1983) A comparison of the corrosion characteristics of synthetic monazite and borosilicate glass containing simulated nuclear defence waste, Nuclear Chem. Waste Management 4, 281–289.

    Article  CAS  Google Scholar 

  2. Ewing, R.C., Lutze, W., Weber, W.J. (1995) J. Mater. Res. 10, 243.

    Article  CAS  Google Scholar 

  3. Lutze, W., Ewing, R.C. (1988) in Radioactive waste forms for the future, Elsevier, Amsterdam, 8, 495.

    Google Scholar 

  4. Orlova, A.I., Zirianov, V.N., Kotelnikov, A.R., Demarin, V.T., Rakitina, E.V. (1993) Ceramic phosphate matrices for wastes of high activity, Radiokhimiya 6, 120–126.

    Google Scholar 

  5. Strachan, D.M., Bakel, A.J., Buck, E.C. and Chamberlain, D.B. (1998) The characterisation and testing of candidate immobilisation forms for the disposal of plutonium, WM’98 Proceedings, Tucson.

    Google Scholar 

  6. Hogfeld, E. (1995) Stability constants of metal ion complexes, IUPAC Chemical Data Series, Franklin Book Co., Inc. Vol. 21 A.

    Google Scholar 

  7. Burdese, A. and Borlera, M.L. (1963) Sui sistemi tra anidride fosforica e biossidi di uranio e torio, Ann. Chim. Roma 53, 344–355.

    CAS  Google Scholar 

  8. Laud, K.R. and Hummel, F. A. (1971) The system ThO2-P2O5, J. Am. Ceram. Soc. 54, 296–298.

    Article  CAS  Google Scholar 

  9. Bamberger, C. E., Haire, R. G., Begun, G. M. and Hellwedge, H. E. (1984) The synthesis and characterisation of crystalline phosphates of thorium, uranium and neptunium, J. Less Common Met. 102, 179–186.

    Article  CAS  Google Scholar 

  10. Tananaev, I. V., Rozanov, I. A. and Beresnev, E. N. (1976) Investigation of thorium phosphates, Inorg. Mater. (In Russian) 12, 886–890.

    CAS  Google Scholar 

  11. Bénard, P., Brandel, V., Dacheux, M, Jaulmes, S., Launay, S., Lindecker, C, Genet, M., Louër, D. and Quarton, M. (1996) Th4PO4)4P2O7 a new thorium phosphate: synthesis characterisation and structure determination, Chem. Mater. 8, 181–188.

    Article  Google Scholar 

  12. Dacheux, N., Thomas, A.C., Chassigneux, B., Brandel, V., and Genet, M (1999) Solid solutions Th4−xMTV x(PO4)4P2O7 (MTV = U, Np, Pu), MRS Symposium Proceedings, Boston (inpress).

    Google Scholar 

  13. De, A.K. and Chowdhury, K. (1974) Studies on thorium phosphate ion exchanger, J. Chromatography 101, 63–72.

    Article  CAS  Google Scholar 

  14. Brandel, V., Dacheux, N., Genet, M., Pichot, E., Emery, J., Buzaré, J.L., and Podor, R. (1998) Chemical conditions of synthesis of Th4(PO4)4P2O7. Preparation of thorium phosphate-hydrogenphosphate as precursor, Chem. Mater. 10, 345–350.

    Article  CAS  Google Scholar 

  15. Dacheux, N., Podor, R., Brandel, V., and Genet, M. (1998) Investigations of systems ThO2-MO2-P2O5 (M = U, Pu, Ce, Zr). Solid solutions of thorium-uranium and thorium-plutonium phosphate-diphosphates, J. Nucl. Mater. 252, 179–186.

    Article  CAS  Google Scholar 

  16. Dacheux, N., Thomas, A.C., Brandel, V., and Genet, M. (1998) Investigation of the system ThO2-NpO2-P2O5. Solid solutions of thorium — neptunium (IV) phosphate-diphosphate. J. Nucl. Mater. 257,108–117

    Article  CAS  Google Scholar 

  17. Le Cloarec, M.F. and Cazaussus, A. (1978) Preparation and properties of tetravalent protactinium phosphates, J. Inorg. Nucl. Chem. 40, 1680–1681.

    Article  Google Scholar 

  18. Burdese, A. and Borlera, M.L. (1963) Sul sistema tra i pirofosfati di uranio e di torio, Ann. Chim. Roma, 53, 333–343.

    CAS  Google Scholar 

  19. Tananev, I.A. (ed,) (1972) Phosphates of Tetravalent Elements Nauka, Moscow.

    Google Scholar 

  20. Matkovic, B, Prodic, B., and Sljukic, M. (1969) Sodium dithorium triphosphate Inorg. Chem. 4, 571.

    Google Scholar 

  21. Von Schwarz, H. (1964) U"ber Verbindungen des Typs MeII 0.5MeIV 05XvO4, Z. Anorg. Algem. Chem. 334, 175–185.

    Article  CAS  Google Scholar 

  22. Clearfield, A. and Smith, S.A. (1968) The crystal structure of zirconium phosphate and the mechanism of its ion exchange, J. Colloid and Interface Science 28, 325–330.

    Article  CAS  Google Scholar 

  23. Herman, R.G. and Clearfield, A. (1977) Crystalline cerium (IV) phosphates, J. Inorg. Nucl. Chem. 39, 143–146.

    Article  CAS  Google Scholar 

  24. Ewing, R.C. (1997) Personal communication at Actinides’97, Baden-Baden, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brandel, V., Dacheux, N., Genet, M., Pichot, E., Thomas, A.C. (2000). Thorium Phosphates as Matrices for Radionuclide Immobilisation. In: Baca, T.E., Florkowski, T. (eds) The Environmental Challenges of Nuclear Disarmament. NATO Science Series, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4104-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4104-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6203-6

  • Online ISBN: 978-94-011-4104-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics