Skip to main content

Modeling Spent Nuclear UO2-Fuel Dissolution Under Repository Conditions

  • Chapter
The Environmental Challenges of Nuclear Disarmament

Part of the book series: NATO Science Series ((ASDT,volume 29))

  • 194 Accesses

Abstract

In this paper we discuss the parameters that affect the uranium solubility potential under reducing conditions, basically pH and redox. Also included are the UO2 dissolution-rate equations as a function of pH, carbonate concentration, and oxidant concentration under oxidising conditions. These experimental equations make it possible to model independent experiments performed with both non-irradiated and irradiated UO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson, L.H. and Shoesmith, D.W. (1988) Spent Fuel in Radioactive Waste Forms for the Future. W. Lutze and R.C. Ewing, eds. (North-Holland, Amsterdam) 635–698.

    Google Scholar 

  2. Grambow, B. et al. Source term for performance assessment of spent fuel as a waste form, Annual Report, European Union (contract FI4W-CT95–0004) European Commission, in press.

    Google Scholar 

  3. Casas, I., de Pablo, J., Giménez, J., Torrero, M.E., Bruno, J., Cera, E., Finch, R.J., and Ewing, R.C. (1998) The role of pe, pH and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions. Geochim. Cosmochim. Acta 62, 2223–2231.

    Article  CAS  Google Scholar 

  4. Parks, G.A. and Pohl, D.C. (1988) Hydrothermal solubility of uraninite. Geochim. et Cosmochim. Acta 52, 863–875.

    Article  CAS  Google Scholar 

  5. Shoesmith, D.W., Sunder, S., Bailey, M.G., and Wallace, G.J. (1989). The corrosion of nuclear fuel (UO2) in oxygenated solutions. Corros. Sci. 29, 1115–1128.

    Article  CAS  Google Scholar 

  6. Casas, I., Giménez, J., Martí, V., Torrero, M.E., and de Pablo, J. (1994b) Kinetic studies of non-irradiated UO2 dissolution under oxidizing conditions in batch and flow experiments. Radiochim. Acta 66/67, 23–27.

    Google Scholar 

  7. Christensen, H. and Bjergbakke, E. (1982) Radiolysis of Groundwater from Spent Fuel, Report Svensk Kärnbränslehantering AB/Kärnbränslesë Kerbet, SKBF/KBS TR-82–18 (Stockholm).

    Google Scholar 

  8. Bruno, J., Casas, I. and Puigdomènech, I. (1991) The kinetics of dissolution of UO2 under reducing conditions and the influence of an oxidized surface layer (UO2+x): Application of a continuous flow-through reactor. Geochim. et Cosmochim. Acta 55, 647–658.

    Article  CAS  Google Scholar 

  9. ENRESA (1997) Evaluación del comportamiento y de la seguridad de un almacenamiento profundo en granito, Internai Report, pp 194

    Google Scholar 

  10. Grenthe, L, Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H. (1992) Chemical Thermodynamics of Uranium (eds. H. Wanner and I. Forest). Elsevier Sci. Publishers, Amsterdam

    Google Scholar 

  11. Bruno, J. and Puigdomènech, I. (1989) Validation of the SKBUl uranium thermodynamic database for its use in geochemical calculations with EQ3/6. Mat. Res. Soc. Symp. Proc. 127, 887–896.

    Article  CAS  Google Scholar 

  12. Barner, J.O., Gray, W.J., McVay, G.L. and Shade, J.W. (1986) Interactive leach tests of UO2 and spent fuel with waste package components in salt brine, Report PNL-4898-SRP (USA).

    Book  Google Scholar 

  13. Giménez, J., Baraj, E., Torrero, M.E., Casas, I., and de Pablo, J. (1996) Effect of H2O2, NaClO and Fe on the dissolution of non-irradiated UO2 in NaCl 5 mol kg−1. Comparison with spent fuel dissolution experiments. J. Nucl. Mat. 238, 64–69.

    Article  Google Scholar 

  14. Grambow, B., Loida, A., Dressier, P., Geckeis, H., Müller, N., Gago, J., Casas, I., de Pablo, J., Giménez, J., and Torrero, M.E. (1997) Chemistry of the reaction of fabricated and high bumup UO2 fuel with saline brines. Final Report EUR 17111 FI2W-CT90–0055, European Commission.

    Google Scholar 

  15. Torrero, M.E., Baraj, E., de Pablo, J., Giménez, J., and Casas, I. (1997) Kinetics of corrosion and dissolution of uranium dioxide as a function of pH. Int. J. Chem. Kinet. 29, 261–267.

    Article  CAS  Google Scholar 

  16. Stumm, W. and Wieland, E. (1990) Dissolution of Oxide and Silicates Minerals: Rates Depend on Surface Speciation, in Stumm Ed., Aquatic Chemical Kinetics, Wiley Interscience Publication, NY.

    Google Scholar 

  17. Forsyth, R.S., Werme, L.O., and Bruno, J. (1986) The corrosion of spent UO2 fuel in synthetic groundwater. J. Nucl. Mat. 138, 1–15.

    Article  CAS  Google Scholar 

  18. Gray, W.J. and Wilson, C.N. (1995) Spent fuel dissolution studies FY 1991 to 1994. Report PNL-10540 Pacific Northwest Laboratory, Hanford, Washington (USA).

    Book  Google Scholar 

  19. Gray, W.J., Leider, H.R., and Steward, S.A (1992) Parametric study of LWR spent fuel dissolution kinetics. J. Nucl. Mat. 190, 46–52.

    Article  CAS  Google Scholar 

  20. de Pablo, J., Casas, L, Giménez, J., Molera, M., and Torrero, M.E. (1997) Effect of temperature and bicarbonate concentration on the kinetics of UO2(s) dissolution under oxidizing conditions. Mat. Res. Soc. Symp. Proc. 465, 535–542.

    Article  Google Scholar 

  21. Grandstaff, D.E. (1976) A kinetic study of the dissolution of uraninite. Economic Geology 8, 1493–1506.

    Article  Google Scholar 

  22. Saaltink, M., Benet, I., and Ayora, C. (1997) RETRASO Fortran code for solving 2D REactive TRAnsport of SOlutes. User’s guide. Universitat Politechnica de Catalunya-Consejo Superior de Investigaciones Cientificas, Barcelona,

    Google Scholar 

  23. Bruno, J., Casas, I., Cera, E., de Pablo, J., Giménez, J., and Torrero, M.E. (1995) Uranium (IV) dioxide and S1MFUEL as chemical analogues of nuclear spent fuel matrix dissolution. A comparison of dissolution results in a standard NaCl/NaHCO3 solution. Mat. Res. Soc. Symp. Proc. 353, 601–608.

    Article  CAS  Google Scholar 

  24. Forsyth, R.S. and Werme, L.O. (1992) Spent fuel corrosion and dissolution. J. Nucl. Mat. 190, 3–19.

    Article  CAS  Google Scholar 

  25. Ollila, K. (1997) Dissolution mechanisms of non-irradiated UO2 fuel in synthetic groundwater. Proc. Spent Fuel Worshop 1998. Las Vegas.

    Google Scholar 

  26. Quiñones, J., García-Serrano, J., Serrano, JA., Díaz-Arocas, P., and Almazán, J.L.R. (1998) SIMFUEL and UO2 solubility and leaching behavior under anoxic conditions. Mat. Res. Soc. Symp. Proc. 506, 247–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Pablo, J., Casas, I., Rovira, M. (2000). Modeling Spent Nuclear UO2-Fuel Dissolution Under Repository Conditions. In: Baca, T.E., Florkowski, T. (eds) The Environmental Challenges of Nuclear Disarmament. NATO Science Series, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4104-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4104-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6203-6

  • Online ISBN: 978-94-011-4104-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics