Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 548))

  • 1083 Accesses

Abstract

In this paper we study the reduction of abelian varieties. In particular, we study the relationships between n-torsion points onXand the reduction of X, where X is an abelian variety over a field F with a discrete valuation, and n is an integer not divisible by the residue characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bertapelle, S. Bosch, Weil restriction and Grothendieck’s duality conjecture, Preprintreihe SFB 478, Heft 16, Universität Münster (1998).

    Google Scholar 

  2. S. Bosch, W. Lütkebohmert, Stable reduction and uniformization of abelian varieties. II, Invent. Math. 78 (1984), no. 2, 257–297

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Bosch, W. Lütkebohmert, Néron models from the rigid analytic viewpoint, J. Reine Angew. Math. 364 (1986), 69–84.

    MathSciNet  MATH  Google Scholar 

  4. S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Springer-Verlag, Berlin-HeidelbergNew York, 1990.

    Book  MATH  Google Scholar 

  5. S. Bosch, W. Lütkebohmert, Degenerating abelian varieties, Topology 30 (1991), 653–698.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Bosch, K. Schloter, Néron models in the setting of formal and rigid geometry, Math. Ann. 301 (1995), 339–362.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bosch, X. Xarles, Component groups of Néron models via rigid uniformization, Math. Ann. 306 (1996), 459–486.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Bosch, Component groups of abelian varieties and Grothendieck’s duality conjecture, Ann. Inst. Fourier 47 (1997), no. 5, 1257–1287.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Deschamps, Réduction semi-stable, in Séminaire sur les pinceaux des courbes de genre au moins deux, L. Szpiro, ed., Astérisque 86 (1981), 1–34.

    Google Scholar 

  10. B. Edixhoven, Néron models and tame ramification, Compositio Math. 81 (1992), no 3,291–306.

    MathSciNet  MATH  Google Scholar 

  11. B. Edixhoven, On the prime-to-p part of the group of connected components of Néron models, Comp. Math. 97 (1995), 29–49.

    MathSciNet  MATH  Google Scholar 

  12. B. Edixhoven, Q. Liu, D. Lorenzini, The p-part of the group of components of a Néron model, J. of Alg. Geom. 5 (1996), 801–813.

    MathSciNet  MATH  Google Scholar 

  13. G. Faltings, C-L. Chai, Degeneration of abelian varieties, Springer-Verlag, Berlin-Heidelberg, 1990.

    MATH  Google Scholar 

  14. A. Grothendieck, Modèles de Néron et monodromie, in Groupes de monodromie en géometrie algébrique, SGA7 I, A. Grothendieck, ed., Lecture Notes in Math. 288Springer, Berlin-Heidelberg-New York, 1972, pp. 313–523.

    Chapter  Google Scholar 

  15. A. Kraus, Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive, Manuscripta math. 69 (1990), 353–385.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Künnemann, Projective regular models for abelian varieties, semistable reduction, and the height pairing, Duke Math. J. 95 (1998), 161–212.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. W. Lenstra, Jr.,F. Oort, Abelian varieties having purely additive reduction, J. Pure and Applied Algebra 36 (1985), 281–298.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Kunyayskii, J-J. Sansuc, Un problème inverse pour la réduction des groupes algébriques commutatifs, C. R. Acad. Sci. Paris 324 (1997), Série I, 307–312.

    Article  Google Scholar 

  19. B. Kunyayskii, J-J. Sansuc, Réduction des groupes algébriques commutatifs, Max-PlanckInstitut preprint #1998–112 (1998).

    Google Scholar 

  20. D. Lorenzini, Groups of components of Néron models of Jacobians, Compositio Math. 73 (1990), no. 2, 145–160.

    MathSciNet  MATH  Google Scholar 

  21. D. Lorenzini, Jacobians with potentially good 1-reduction, J. Reine Angew. Math. 430 (1992), 151–177.

    MathSciNet  MATH  Google Scholar 

  22. D. Lorenzini, On the group of components of a Néron model, J. Reine Angew. Math. 445 (1993), 109–160.

    MathSciNet  MATH  Google Scholar 

  23. W. McCallum, Duality theorems for Néron models, Duke Math. J. 53 (1986), 1093–1124.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Comp. Math. 24 (1972), 239–272.

    MathSciNet  MATH  Google Scholar 

  25. D. Mumford, Abelian varieties, Second Edition, Tata Lecture Notes, Oxford University Press, London, 1974.

    MATH  Google Scholar 

  26. E. Nart, X. Xarles, Additive reduction of algebraic tori, Arch. Math. 57 (1991), 460–466.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Etudes Sci. Publ. Math. 21 1964, 128 pp.

    MathSciNet  MATH  Google Scholar 

  28. M. Raynaud, Modèles de Néron, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A345–A347.

    MathSciNet  Google Scholar 

  29. M. RaynaudVariétés abéliennes et géométrie rigide. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 473–477. Gauthier-Villars, Paris, 1971.

    Google Scholar 

  30. J-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. math. 15 (1972), 259–331.

    Article  MathSciNet  MATH  Google Scholar 

  31. J-P. Serre, J. Tate, Good reduction of abelian varieties, Ann. of Math.88 (1968), 492–517.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Silverberg, Yu. G. Zarhin, Semistable reduction and torsion subgroups of abelian varieties, Ann. Inst. Fourier 45, no. 2 (1995), 403–420.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Silverberg, Yu. G. Zarhin, Connectedness results for 1-adic representations associated to abelian varieties, Comp. math. 97 (1995), 273–284.

    MathSciNet  MATH  Google Scholar 

  34. A. Silverberg, Yu. G. Zarhin, Variations on a theme of Minkowski and Serre, J. Pure and Applied Algebra, 111 (1996), 285–302.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Silverberg, Yu. G. Zarhin, Semistable reduction of abelian varieties over extensions of small degree, J. Pure and Applied Algebra, 132 (1998), 179–193.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Silverberg, Yu. G. Zarhin, Subgroups of inertia groups arising from abelian varieties, J. Algebra, 209 (1998), 94–107.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Silverberg, Yu. G. Zarhin, Étale cohomology and reduction of abelian varieties,preprint (1998)http://xxx.lanl.gov/abs/math.AG/9808125.

    Google Scholar 

  38. A. Silverberg, Yu. G. Zarhin, Polarizations on abelian varieties and self-dual f-adic representations of inertia groups, preprint (1999).

    Google Scholar 

  39. A. Silverberg, Yu. G. Zarhin, Symplectic representations of inertia groups, in preparation.

    Google Scholar 

  40. J. H. Silverman, The Néron fiber of abelian varieties with potential good reduction, Math. Ann. 264 (1983), 1–3.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Weil, Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948.

    MATH  Google Scholar 

  42. A. Werner, On Grothendieck’s pairing of component groups in the semistable reduction case, J. Reine Angew. Math. 486 (1997), 205–215.

    MathSciNet  Google Scholar 

  43. X. Xarles, The scheme of connected components of the Néron model of an algebraic torus, J. Reine Angew. Math. 437 (1993), 167–179.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Silverberg, A., Zarhin, Y.G. (2000). Reduction of Abelian Varieties. In: Gordon, B.B., Lewis, J.D., Müller-Stach, S., Saito, S., Yui, N. (eds) The Arithmetic and Geometry of Algebraic Cycles. NATO Science Series, vol 548. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4098-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4098-0_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6194-7

  • Online ISBN: 978-94-011-4098-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics