Skip to main content

Algebraic Cycles on Abelian Varieties

Application of abstract Fourier theory

  • Chapter
The Arithmetic and Geometry of Algebraic Cycles

Part of the book series: NATO Science Series ((ASIC,volume 548))

Abstract

We give a survey of the Fourier-Mukai transform on abelian varieties. This is a correspondence from an abelian variety to its dual abelian variety, constructed from the Poincaré bundle. This correspondence was used by Lieberman and Mukai to compute cohomology and K -theory of abelian varieties and later by Beauville to study Chow groups of abelian varieties. We discuss the main theorem and the essential part of its proof (the so-called inversion formula) and as applications a theorem of Bloch on Pontryagin powers of algebraic cycles and the decomposition theorem of Beauville for Chow groups. We conclude by mentioning some further developments due to Deninger-Murre and Künnemann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beauville, A. (1983) Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, in M. Raynaud and T. Shioda (eds), Algebraic Geometry, Proceedings Tokyo, Kyoto 1982. Springer Verlag LNM 1016, Berlin, etc, pp 238–260.

    Chapter  Google Scholar 

  2. Beauville, A. (1986) Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273, 647–651.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloch, S. (1976) Some elementary theorems about algebraic cycles on abelian varieties, Invent. Math. 37, 215–228.

    MathSciNet  MATH  Google Scholar 

  4. Borel, A. and Serre, J.-P. (1958) Le théorème de Riemann-Roch (d’après Grothendieck), Bull. Soc. Math. de France 86, 97–136.

    MathSciNet  MATH  Google Scholar 

  5. Deninger, C. and Murre, J.P. (1991) Motivic decomposition of abelian schemes and the Fourier transform, Journal reine und angew. Math 422, 201–219.

    MathSciNet  MATH  Google Scholar 

  6. Fulton, W. (1984) Intersection Theory, Erg. der Math. 3 Folge, Band 2, Springer Verlag, Berlin, etc.

    MATH  Google Scholar 

  7. Grothendieck, A. (1958) La théorie des classes de Chern, Bull. Soc. Math. de France 86, 137–154.

    MathSciNet  MATH  Google Scholar 

  8. Kleiman, S.L. (1968) Algebraic cycles and the Weil conjectures, in Giraud, J. et al, (eds) Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, pp. 359–389.

    Google Scholar 

  9. Künnemann, K. (1991) On the motive of an abelian scheme, in Janssen, U. et al (eds) Motives, Proc. Symp. Pure Math. 55 part 1, AMS, 189–205.

    Google Scholar 

  10. Künnemann, K. (1993) A Lefschetz decomposition for Chow motives of abelian schemes, Invent. Math 113, 85–103.

    Article  MathSciNet  MATH  Google Scholar 

  11. Künnemann, K. (1994) Arakelov Chow groups of abelian schemes, arithmetic Fourier transform and analogues of the standard conjectures of Lefschetz type, Math.Ann. 300, 365–392.

    Article  MathSciNet  MATH  Google Scholar 

  12. Mukai, S. (1981) Duality between D(X) and D(\(\hat X\)) with its application to Picard sheaves, Nagoa Math. J. 81, 153–175.

    MathSciNet  MATH  Google Scholar 

  13. Mumford, D. (1969) Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto Univ. 9, 195–204.

    MathSciNet  MATH  Google Scholar 

  14. Mumford, D. (1970) Abelian varieties, Oxford Univ. Press, London.

    MATH  Google Scholar 

  15. Murre, J.P. (1993) On a conjectural filtration on the Chow groups of an algebraic variety, Indag. Math (New Series) 4, 177–201.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Murre, J.P. (2000). Algebraic Cycles on Abelian Varieties. In: Gordon, B.B., Lewis, J.D., Müller-Stach, S., Saito, S., Yui, N. (eds) The Arithmetic and Geometry of Algebraic Cycles. NATO Science Series, vol 548. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4098-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4098-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6194-7

  • Online ISBN: 978-94-011-4098-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics