Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 75))

Abstract

Nanosize crystals (quantum dots) of semiconductor embedded in a glass matrix are materials of great interest, due to the controllable optical properties of the semiconductor. Due to the finite size and confinement of the nanocrystals, their linear and nonlinear optical properties change drastically. The distribution of nanocrystal sizes in the material is one of the important parameters, which effects the sharpness of the optical absorption spectrum. We have been exploring phosphate-fluorine based glass matrices, doped with CdSxSex. In this matrix the concentration of semiconductor can be increased by an order of magnitude and the annealing and coalescence temperatures are a few hundred degrees below those for silicate glasses thus making glass processing much simpler. We will describe our measurements of the linear and nonlinear properties of these glasses. In particular the measurement of χ(3) by four wave mixing will be reported. Higher order nonlinear properties, the saturation of the nonlinearity and the onset of irreversible optical changes in the material will be described and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peyghambarian, Koch, N. S. W., Gibbs, H. M., and Haug, H. (1990) Nonlinear optical materials and devices, in S. Martellucci and A. N. Chester (eds.), Nonlinear optics and optical computing, Plenum Press, New York, pp 99–130.

    Chapter  Google Scholar 

  2. Woggon, U. (1997) Optical properties of semiconductor quantum dots, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  3. Kreibig, U., Vollmer M. (1995) Optical properties of metal clusters, Springer Series in Materials Sciences, Vol. 25, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  4. Baba, K., Yamada, R., Nakao, S., and Miyagi, M. (1993) Multifrequency three-dimensional optical read-only memory disks using metallic island films: prel. experiments, Appl. Optics 32, 3137–3143.

    Article  ADS  Google Scholar 

  5. Eichler, H.J., Gunter, P., Pohl, D.W. (1986) Laser-induced dynamic gratings, in T. Tamir (ed.), Springer Series in Optical Sciences, Vol..50, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  6. Kaganovskii, Yu. and Rosenbluh, M. (1996) Pulsed laser recording of gratings in SiO-Cu quantum dot thin films, Appl. Phys. Letters 69, 3297–3299.

    Article  ADS  Google Scholar 

  7. Sipe, J. E., Young, J. F., Preston, J. S., and van Driel, H. M. (1983) Laser-induced periodic surface structure, Phys. Rev. B 27, 1141–1154.

    Article  ADS  Google Scholar 

  8. Kaganovskii, Yu. and Rosenbluh, M. (1997) Diffusional growth of quantum dots in thin SiO-Cu films irradiated by laser pulses, Defect and Diffusion Forum 143–147, 1607–1612.

    Google Scholar 

  9. Hopper, R. W. and Uhlmann, D. R. (1970) Mechanism of inclusion damage in laser glass, J. Appl. Phys. 11, 4023–4037.

    Article  ADS  Google Scholar 

  10. Carslaw, H. S. and Jaeger, J. C. (1959) Conduction of Heat in Solids, Oxford U. P., Oxford, England.

    Google Scholar 

  11. Geguzin, Ya. E., Krivoglaz, M. A. (1973) Migration of Macroscopic Inclusions in Solids, Plenum Publishing Corp., New York - London.

    Google Scholar 

  12. Landau, L., Lifshits, E. (1965) Theory of Elasticity, Nauka, Moscow.

    Google Scholar 

  13. Geguzin, Ya. E. (1984) Physics of Sintering, Nauka, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaganovskii, Y., Lipovskii, A., Rosenbluh, M. (2000). Recording in Quantum Dot Glasses by Pulsed Laser Irradiation. In: Marom, E., Vainos, N.A., Friesem, A.A., Goodman, J.W., Rosenfeld, E. (eds) Unconventional Optical Elements for Information Storage, Processing and Communications. NATO Science Series, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4096-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4096-6_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6191-6

  • Online ISBN: 978-94-011-4096-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics