Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 75))

  • 179 Accesses

Abstract

Engineering of new nonlinear materials, structures and devices with enhanced figures of merit has acted over the two last decades as a major driving force in optics: electrooptic polymers have emerged in this context as a sound basis for a currently maturing integrated optics technology with a variety of industrial applications at stake. We report here on a major turning point in this field whereby nonlinear optical phenomena, while remaining a major functional end-goal, are being furthermore implemented in the elaboration process itself. Coherent multiphoton processes appear indeed as unique tools to pattern linear and nonlinear structures to a sophistication level out of the reach of earlier technologies. We will review the basic physical phenomena involved which mainly pertain to quantum interferences between multiphoton excitation pathways in photosensitive media. Multipolar nonlinear patterns reflecting the multipolar symmetry of controllable polarization states of the coherent writing beams can be permanently or imprinted on a variety of substrates from films to waveguides, or gratings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zyss, J. (1994) Ed.:Molecular Nonlinear Optics: Materials Physics and Device.Academic Press, New York

    Google Scholar 

  2. Ledoux, I. and Zyss, J. (1997) Molecular nonlinear optics: fundamentals and application, in Khoo, I.C., Simoni, F. and Umetonn C. (Eds).Novel Optical Materials and ApplicationsChapter I, pp. 1–48.

    Google Scholar 

  3. Zyss, J. (1993) Molecular engineering implication of rotational invariance in quadratic nonlinear optics: from dipolar to octupolar molecules and materials, J. Chem. Phys. 98 6583–6599

    Article  ADS  Google Scholar 

  4. Zyss, J. (1991) Octupolar organics systems in quadratic nonlinear optics: molecules and materials, Nonlinear Optics, 1 3–18.

    Google Scholar 

  5. Joffre, M., Yaron, D., Silbey R. and Zyss, J. (1992) Second order optical nonlinearity in octupolar aromatic systems, J.Chem. Phys. 975607–5615.

    Article  ADS  Google Scholar 

  6. Brasselet, S. and Zyss, J. (1996) Relation between quantum and geometricdimensionalities in molecular nonlinear optics: beyond the two-level model for anisotropic system, Journal of Nonlinear Phys. and Mater. 54, 671–693.

    Article  ADS  Google Scholar 

  7. Glauber, R.J. (1967) in Quantum Optics, in R.J. Glauber, (Ed.)Proceedings of E. Fermi International School in PhysicsAcademic Press, New York, p.15.

    Google Scholar 

  8. Baranova, N.B. and Ya Zel’dovich, B. (1991) Physical effects in optical fields with nonzero average cube <E3>≠0, J. Opt. Soc. Am. B (8) 127–32.

    Article  Google Scholar 

  9. Sasaki, Y. and Ohmori, Y. (1981) Phase-matched sum-frequency light generation in optical fibers Appl. Phys. Lett. 39 466–468

    Article  ADS  Google Scholar 

  10. Osterberg, U. and Margulis, W. (1987) Opt. Leu. 12 57.

    Article  ADS  Google Scholar 

  11. Fiorini, C., Charra, F. and Nunzi, J.M. (1994) Six-wave mixing probe of light-induced second-harmonic generation: example of dye solution, J. Opt. Soc. Am. B (11), 122347–2358.

    Article  ADS  Google Scholar 

  12. Brasselet, S. and Zyss, J. (1998) Control of the photoinduced micro-patterning of nonlinear organic thin films: from molecular to photonic engineering, J. Opt. Soc. Am. B (15) 1208–210.

    Google Scholar 

  13. Fiorini, C., Charra, F., Nunzi, J.M., Samuel, I.D.W. and Zyss, J. (1995) Light—induced second-harmonic generation in an octupolar dye, Optics Lett.(20)242469–2471.

    Article  ADS  Google Scholar 

  14. Zyss, J. and Brasselet, S. (1998) From dipolar molecular engineering to multipolar photonic engineering in nonlinear optics in Reinish, R. and Kajzar, F. (eds.) Beam Shaping and Control with Nonlinear Optics NATO ASI Series Volume, Plenum Publishing Corporation, (accepted)

    Google Scholar 

  15. Zyss, J. and Brasselet, S. (1998) Multipolar symmetry patterns in molecular nonlinear optics, in Khoo, I.C., Simoni, F. and Umeton, C. (eds.) Novel Optical Materials and Applications Wiley, 7 (3) pp. 397–439.

    Google Scholar 

  16. Zyss, J. and Ledoux, I. (1994) Nonlinear optics multipolar media: theory and experimental, Chem. Rev. 9477–105.

    Article  Google Scholar 

  17. Jerphagnon, J., Chemla, D.S. and Bonneville, R. (1978) The description of the physical properties of condensed matter using irreducible tensors, Adv. in Phy. 27609–650.

    Article  ADS  Google Scholar 

  18. Zyss, J. (1993) Molecular engineering implication of rotational invariance in quadratic nonlinear optics: from dipolar to octupolar molecules and materials J. Chem. Phys, 98 6583–6599

    Article  ADS  Google Scholar 

  19. Zyss, J. (1991) Octupolar organics systems in quadratic nonlinear optics: molecules and materials, Nonlinear Optics, 1 3–18.

    Google Scholar 

  20. Dumont, M., Sekkat, Z., Loucif-Saïbi, R., Nakatani K. and Delaire, J. (1993) Photoisomerization, photoinduced orientation and orientational relaxation of azo dyes in polymeric films, Nonlinear Optics 5395–406.

    Google Scholar 

  21. Shi, Y., Steier, W.H., Yu, L., Chen, M. and Dalton, L.R. (1991) Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side chains,Appl.Phys. Letters 581131–1133; Large photoinduced birefringence in an optically nonlinear polyester polymer,Appl.Phys. Letters 592935–2937.

    Google Scholar 

  22. Prasad, P.N. and Williams, D.J. (1991) Introduction to Nonlinear Effects in Molecules and Polymers Wiley, New York.

    Google Scholar 

  23. Teng, C.C. (1992) Travelling-wave polymeric optical intensity modulator with more than40 GHz of 3-dB electrical bandwidth, Appl. Phys. Lett. 601538–1540.

    Article  ADS  Google Scholar 

  24. Hawng, W.Y., Kim, J.J., Zyung, T., Oh, M.C. and Shin, S.Y. (1995) Post-photobleaching method for control of coupling constant in an electro-optic polymer directional coupler switch, Appl. Phys. Lett. 67763–765.

    Article  ADS  Google Scholar 

  25. Oh, M.C. and Shin, S.Y. (1996) Polymeric Polarization Independent Modulator Incorporating Twisted Optic Axis Waveguide Polarization Converters, IEEEP hot. Tech. Lett. 8 (11)1483–1485.

    Article  ADS  Google Scholar 

  26. Donval, A., Toussaere, E., Hierle, R., Zyss, J., New polarization insensitive electrooptic polymer amplitude modulator designed for integrated optic, to be published.

    Google Scholar 

  27. Sekkat Z. and Dumont, M. (1992) Photoassisted poling of azo dye doped polymeric films at room temperature, Appl. J.Phys. B 54486–489; (1992) Poling of polymer films by photoisomerization of azo dye chromophore, Nonlinear Optics 2359–362.

    Google Scholar 

  28. Liang, J., Toussaere, E., Hierle, R., Levenson, R., Zyss, J., Ochs, A.V., Rousseau, A., and Boutevin, B. (1998) Low loss, low refractive index fluorinated self-crosslinking polymer waveguides for optical applications, Optical Materials1629.

    Google Scholar 

  29. Liang, J., Levenson, R., Rossier, C., Toussaere, E., Zyss, J., Rousseau, A., Boutevin, B., Foll, F. and Bosc, D. (1994) Thermally stable cross-linked polymers for electro-optic applications, J.Phys.III France 42441–2450.

    Article  Google Scholar 

  30. E.Toussaere, S.Brasselet and J.Zyss, to be published.

    Google Scholar 

  31. Kim, D.Y., Tripathy, S.K., Lian, Li, Kumar, J. (1995) Laser induced holographic surface relief gratings on nonlinear optical polymer films Appl.Phys.Lett., 66 (10) 1166–1168

    Article  ADS  Google Scholar 

  32. Rochon, P., Batalla, E. and Natansohn, A. (1995) Optically induced surface gratings on azoaromatic polymer films Appl.Phys.Lett., 66 (2) 136–138.

    Article  ADS  Google Scholar 

  33. Born, M. and Wolf, E.Principles of OpticsFifth Edition, pp. 262–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zyss, J., Donval, A., Brasselet, S., Labbé, P., Toussaere, E. (2000). Nonlinear Photonic Engineering: Physics and Applications. In: Marom, E., Vainos, N.A., Friesem, A.A., Goodman, J.W., Rosenfeld, E. (eds) Unconventional Optical Elements for Information Storage, Processing and Communications. NATO Science Series, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4096-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4096-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6191-6

  • Online ISBN: 978-94-011-4096-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics