Skip to main content

0.9PMN-0.1PT Ceramics: From Electromechanical Properties to Applications Via Nanostructural Characterization

  • Chapter
Piezoelectric Materials: Advances in Science, Technology and Applications

Part of the book series: NATO Science Series ((ASHT,volume 76))

Abstract

The electromechanical responses of the 0.9PMN-0.1PT ceramics are studied under different types of electric field (static or dynamic) and mechanical stress. Relationships between the sensitivity of 0.9PMN-0.1PT nanostructure to these different excitation parameters, and the associated electromechanical responses are reported. The potential of 0.9PMN-0.1PT ceramics for active damping applications is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uchino, K. (1986) Electrostrictive Actuators: Materials and Applications, Am. Ceram. Soc. Bull. 65[4], 647–652

    Google Scholar 

  2. Smolenskii, G. A. (1958) On the mechanism of polarization in solid solutions of PNN-PMN, J. Tech. Phys. USSR 28, 7

    Google Scholar 

  3. Lattard, E., Lejeune, M., Guinebretière, R., Imhoff, D., Abelard, P. (1997) Study of 0.9PMN-0.1PT dielectric behaviour in relation to the nanostructure, J. Phys. III. 7, 1173–1196

    Google Scholar 

  4. Lu, Z.G. and Calvarin, G. (1995) Frequency dependence of the complex dielectric permittivity of ferroelectric relaxors, Physical Review B 51[5], 2694–2702

    Article  Google Scholar 

  5. Cross, L.E. (1987) Relaxor Ferroelectrics, Ferroelectrics 76, 241–267

    Article  Google Scholar 

  6. Burns, G. and Dacol, F.H. (1990) Ferroelectrics with a glassy polarization phase, Ferroelectrics 104, 25–35

    Article  Google Scholar 

  7. De Mathan, N., Husson, E., Calvarin, G., Gavarri, J.R., Hewat, A.W. and Morell, A. (1991) A structural model for the relaxor Pb(Mg1/3Nb2/3)O3 at 5 K, J. Phys.: Condens. Matter 3, 8159–8171

    Article  Google Scholar 

  8. Bonneau, P., Gamier, P., Calvarin, G., Husson, E., Gavarri, J.R., Hewat, A.W. and Morell, A. (1991) X-ray and neutron diffraction studies of the diffuse phase transition in Pb(Mg1/3Nb2/3)O3 ceramics, J. Solid State Chemistry 91, 350–361

    Article  Google Scholar 

  9. Isupov, V.A. (1956) On the question of causes of formation of a Curie range of temperatures in certain ferroelectric solid solutions, Soviet Physics, Technicals Physics 1, 1846–1849

    Google Scholar 

  10. Smolenskii, G.A. (1970) Physical phenomena in ferroelectrics with diffused phase transition, J. Phys. Soc. Jpn 28, 26–37

    Google Scholar 

  11. Chabin, M., Malki, M., Husson, E. et Morrel, A. (1994) Etudes diélectriques de la transition ferroélectrique induite par application d’un champ électrique dans les céramiques Pb(Mg1/3Nb2/3)O3 (PMN), J. Phys. III 4, 1151–1163

    Google Scholar 

  12. Sommer, R., Yushin, N.K. and Van Der Klink, J.J. (1992) Dielectric susceptibility of PMN under DC bias, Ferroelectrics 127, 235–240

    Article  Google Scholar 

  13. Butcher, S.J. and Daglish, M. (1989) A field-induced phase transition in PMN ceramics, Ferroelectrics Letters 10, 117–124

    Article  Google Scholar 

  14. Nakajima, Y., Hayashi, T., Hayashi, I. and Uchino, K. (1985), Electrostrictive properties of a PMN stacked actuator, Jpn. J. Appl. Phys. 24[2], 235–238

    Article  Google Scholar 

  15. Brown, S.A., Horn, C.L., Massuda, M., Prodey, J.D., Bridger, K., Shankar, N., and Winzer, S.R. (1996) Electromechanical testing and modeling of a PMN-PT-BT Relaxor Ferroelectric, J. Am. Ceram. Soc. 79[9], 2271–2282

    Article  Google Scholar 

  16. Viehland, D., Jang, S.J., Cross, L.E., and Wuttig, M. (1991) Anelastic relaxation and internal strain in lead magnesium niobate relaxors, Philosophical Magazine A 64[4], 835–849

    Article  Google Scholar 

  17. Arndt, H., Schmidt, G., and Vogel, N. (1984) Influence of uniaxial pressure on the properties of PLZT ceramics, Ferroelectrics 61, 9–18

    Article  Google Scholar 

  18. Cao, H. and Evans, A.G. (1994) Electric-field-induced fatigue crack growth in piezoelectrics, J. Am. Ceram. Soc. 77[7], 1783–1786

    Article  Google Scholar 

  19. Schmidt, G. (1990) Diffuse ferroelectric phase transitions in cubically stabilised perovskites, Phase Transitions 20, 126–162

    Article  Google Scholar 

  20. Schmidt, G., Arndt, H., Borchhardt, G., Cieminski, J.V., Petzsche, T., Borman, K., Sternberg, A., Zirnite, A. and Isupov, V.A., (1981) Induced phase transitions in ferroelectrics with diffuse phase transition, Phys. Stat. Sol. (a) 63, 501–510

    Article  Google Scholar 

  21. Zhang, X.D. and Rodgers, C.A. (1993) A macroscopic phenomenological formulation for coupled electromechanical effects in piezoelectricity, J. of Intell. Mater. Syst. and Struct. 4, 307–316

    Article  Google Scholar 

  22. Horn, C.L. and Shankar, N. (1994) A fully coupled constitutive model for electrostrictive ceramic materials, J. of Intell. Mater. Syst. and Struct. 5, 795–801

    Article  Google Scholar 

  23. Fripp, M. (1995) Distributed structural actuation and control with electrostrictors, S.M. Thesis, Massachusetts Institute of Technology, Departement of Aeronautics and Astronautics, Cambridge, Massachusetts (USA)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lejeune, M., Kurutcharry, S., Lattard, E., Oudjedi, M., Abelard, P. (2000). 0.9PMN-0.1PT Ceramics: From Electromechanical Properties to Applications Via Nanostructural Characterization. In: Galassi, C., Dinescu, M., Uchino, K., Sayer, M. (eds) Piezoelectric Materials: Advances in Science, Technology and Applications. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4094-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4094-2_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6213-5

  • Online ISBN: 978-94-011-4094-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics