Skip to main content

Piezo-, Pyro- and Ferroelectric Polymers

  • Chapter
  • 914 Accesses

Part of the book series: NATO Science Series ((ASHT,volume 76))

Abstract

Piezo, pyro, and ferroelectric polymers are known since 30 years. With piezo- and pyroelectric coefficients being less than that of crystalline or ceramic piezoelectrics, polymers have found niche applications in diverse fields, ranging from sensor systems and nondestructive testing to fundamental research applications, such as photopyroelectric spectroscopy and microcalorimetry. This survey discusses the technologically important polymers polyvinylidene fluoride {PVDF} and its copolymers with trifluoroethylene {P(VDF-TrFE)}. Recent developments include the preparation and characterization of ultra-thin ferroelectric polymer films and relaxor-type ferroelectric polymers with large electrostrictive responses. Special emphasis is given to techniques for measuring the piezo- and pyroelectric activity, and to their use for the nondestructive probing of nonuniform space-charge and polarization distributions in polymer films. A few recent applications are selected which display the large potential of exploiting ferroelectric polymers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kawai, H. (1969) The piezoelectricity of poly(vinylidene fluoride), Jpn. J. Appl. Phys. 8, 975–976.

    Article  Google Scholar 

  2. Gerhard-Multhaupt, R. (ed.) (1999), Electrets, 3rd ed., Vol. II, Laplacian Press, Morgan Hill, chapters 11 and 12.

    Google Scholar 

  3. Lovinger, A. J. (1983) Ferroelectric polymers, Science 220, 1115–1121.

    Article  Google Scholar 

  4. Rollik, D., Bauer, S., and Gerhard-Multhaupt, R. (1999) Separate contributions to the pyroelectricity in polyvinilidene fluoride from the amorphous and crystalline phases as well as from their interface, J. Appl. Phys. 85, 3282–3288.

    Article  Google Scholar 

  5. Sessler, G. M., Das-Gupta, D. K., DeReggi, A. S., Eisenmenger, W., Furukawa, T., Giacometti, J. A., and Gerhard-Multhaupt, R., (1992) Piezo-and pyroelectricity in electrets: Caused by charges, dipoles or both? IEEE Trans. Electr. Insul. 27, 872–897.

    Article  Google Scholar 

  6. Bune, A.V., Fridkin, V.M., Ducharme, S., Blinov, L. M., Palto, S. P., Sorokin, A. V., Yudin, S. G., Zlatkin, A. (1998) Two-dimensional ferroelectric films, Nature 391, 874–877.

    Article  Google Scholar 

  7. Isner-Brom, P., Brissand, M., Heintz, R., Eyrand, L., and Bauer, F. (1995) Intrinsic piezoelectric characterization of PVDF copolymers: Determination of elastic constants, Ferroelectrics 171, 271–279.

    Article  Google Scholar 

  8. Fox, D. (1991) A high performance piezoelectric cable, Ferroelectrics 115, 215–224.

    Article  Google Scholar 

  9. Nalwa, H. S. (ed.) (1995) Ferroelectric polymers: Chemistry, physics and applications, Marcel Dekker, New York, Basel, Hong-Kong.

    Google Scholar 

  10. Fraden, J. (1996) Handbook of modern sensors: Physics, designs and applications 2nd ed., American Institute of Physics, Woodbury, New York.

    Google Scholar 

  11. Furukawa, T. (1997) Structure and functional properties of ferroelectric polymers, Adv. Colloid Interface Sci. 71–72, 183–208.

    Google Scholar 

  12. Heiler B. and Ploss B. (1994) Dielectric nonlinearities of P(VDF-TrFE), Proceedings, 8th International Symposium on Electrets ISE8, 662–667 (Paris 1994).

    Google Scholar 

  13. Bauer S. (1996) Poled polymers for sensors and photonic applications, J. Appl. Phys. 80, 5531–5558.

    Article  Google Scholar 

  14. Balta Calleja, F. J., Gonzales-Arche, A., Ezquerra, T. A., Santa-Cruz, C., Batallan, F., Frick, B., and Lopez-Cabarcos, E. (1993) Structure and properties of ferroelectric copolymers of poly(vinylidene fluoride), Adv. Polym. Sci. 108, Springer, Berlin, Heidelberg.

    Google Scholar 

  15. Ikeda, I., Kominami, K., Koyama, K., and Wada, Y. (1987) Nonlinear dielectric constant and ferroelectric-to-paraelectric phase transition in copolymers of vinylidene fluoride and trifluoroethylene, J. Appl. Phys. 62, 3339–3942.

    Article  Google Scholar 

  16. Ploss, B., and Ploss, B. (1998) Influence of poling and annealing on the nonlinear dielectric permittivity of P(VDF-TrFE) copolymers, IEEE Trans. Diel. Electr. Insul. 5, 91–95.

    Article  Google Scholar 

  17. Ducharme, S., Bune, A. V., Blinov, L. M., Fridkin, V. M., Palto, S. P., Sorokin, A. V., and Yudin, S. G. (1998) Critical point in ferroelectric Langmuir-Blodgett films, Phys. Rev. B 57, 25–28.

    Article  Google Scholar 

  18. Zhang, Q. M., Bharti, V., and Zhao, X. (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene ) copolymer, Science 280, 2101–2104.

    Article  Google Scholar 

  19. Eberle, G., Schmidt, H. and Eisenmenger W., (1996) Piezoelectric polymer electrets, IEEE Trans. Diel. Electr. Insul. 3, 624–646.

    Article  Google Scholar 

  20. Bauer, S. (1995) The pyroelectric response of polymers and its applications, Trends Polym. Sci. 3, 288–296.

    Google Scholar 

  21. De Rossi, D., DeReggi, A. S., Broadhurst, M. G., Roth, S. C., and Davis, G. T. (1982) Method of evaluating the thermal stability of the pyroelectric properties of polyvinylidene-fluoride: Effects of poling temperature and field, J. Appl. Phys. 53, 6520–6525.

    Article  Google Scholar 

  22. Fedosov, S. N. and Sergeeva, A. E. (1989) Nature of pyroelectricity in polyvinylidene fluoride, Sov. Phys. Solid State 31, 503–505.

    Google Scholar 

  23. Ruf, R., Bauer, S., and Ploss, B. (1992) The ferroelectric phase transition of P(VDF-TrFE) polymers, Ferroelectrics 127, 209–214.

    Article  Google Scholar 

  24. Ploss, B. and Domig, A. (1994) Static and dynamic pyroelectric properties of PVDF, Ferroelectrics 159, 263–268.

    Article  Google Scholar 

  25. M. Lindner, K. Schrattbauer, unpublished results.

    Google Scholar 

  26. Ploss, B., Emmerich, R., and Bauer, S. (1992) Thermal wave probing of pyroelectric distributions in the surface region of ferroelectric materials: A new method for the analysis, J. Appl. Phys. 72, 5363–5370.

    Article  Google Scholar 

  27. Bauer, S. and DeReggi, A. S. (1996) Pulsed electro-thermal technique for measuring the thermal diffusivity of dielectric films on conducting substrates, J. Appl. Phys 80, 6124–6128.

    Article  Google Scholar 

  28. Bauer, S. and Bauer-Gogonea, S. (1998) Pyroelectric investigations: Tool for the study of thermal, elastic, and electric properties, Dielectrics Newsletter, September issue 1–3.

    Google Scholar 

  29. Takahashi, Y., Hiraoka, K., and Furukawa, T. (1998) Time evolution of laser induced pyroelectric responses in a VDF/TrFE copolymer, IEEE Trans. Diel. Electr. Insul. 5, 957–960.

    Article  Google Scholar 

  30. Bauer-Gogonea, S., Bauer, S., and Wirges, W. (1999) Pulsed electrothermal technique for the characterization of dielectric films, Proc. SPIE, in press.

    Google Scholar 

  31. Bauer, S., and Ploss, B. (1992) Design and properties of a pyroelectric microcalorimeter, IEEE Trans. Electr. Insul. 27, 861–866.

    Article  Google Scholar 

  32. Stuckless, J. T., Frei, N. A., and Campbell, C. T. (1998) A novel single-crystal adsorption calorimeter and additions for determining metal adsorption and adhesion energies, Rev. Sci. Instrum. 69, 2427–2438.

    Article  Google Scholar 

  33. Wang, T. T., Herbert, J. M., and Glass, A. M. (eds.) (1988) The applications of ferroelectric polymers, Blackie and Son, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bauer, S., Bauer-Gogonea, S., Lindner, M., Schrattbauer, K. (2000). Piezo-, Pyro- and Ferroelectric Polymers. In: Galassi, C., Dinescu, M., Uchino, K., Sayer, M. (eds) Piezoelectric Materials: Advances in Science, Technology and Applications. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4094-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4094-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6213-5

  • Online ISBN: 978-94-011-4094-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics