Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 76))

Abstract

The piezoelectric nonlinearity and electro-mechanical hysteresis in ferroelectric ceramics are reviewed in terms of recently proposed models. Examples of reduction and control of the nonlinearity and hysteresis by material engineering are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nakamura, K. and Shimizu, H. (1989) Hysteresis-free piezoelectric actuators using LiNbO3 plates with a ferroelectric inversion layer, Ferroelectric s 93, 211–216.

    Article  Google Scholar 

  2. Uchino, K., (1997) Piezoelectric actuators and ultrasonic motors, Kluwer, Norwell, MA.

    Google Scholar 

  3. Reaney, I. M. and Damjanovic, D. (1996) Crystal structure and domain-wall contributions to the piezoelectric properties of strontium bismuth titanate ceramics, J. Appl. Phys. 80, 4223–4225.

    Article  Google Scholar 

  4. Damjanovic, D. and Demartin, M. (1997) Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics, J. Phys.: Condens. Matter 9, 4943–4953.

    Article  Google Scholar 

  5. Damjanovic, D. and Demartin, M. (1996) The Rayleigh law in piezoelectric ceramics, J. Phys. D: Appl. Phys. 29, 2057–2060.

    Article  Google Scholar 

  6. Mueller, V. and Zhang, Q. M. (1998) Nonlinearity and scaling behavior in donor-doped lead zirconate titanate piezoceramic, Appl. Phys. Lett. 72, 2692–2694.

    Article  Google Scholar 

  7. Tikhomirov, O. A. (1997) Vibrations of domain walls in ac field and the low frequency permittivity of ferroelectrics, Ferroelectrics 190, 37–42.

    Article  Google Scholar 

  8. Tsurumi, T., Kumano, Y., Ohashi, N., Takenaka, T., and Fukunaga, O. (1997) 90° Domain Reorientation and Electric-Field-Induced strain of Tetragonal lead Zirconate Titanate Ceramics, Jpn. J. Appl. Phys. 36, 5970–5975.

    Article  Google Scholar 

  9. Arlt, G. (1982) Piezoelectric relaxation, Ferroelectrics 40, 149–157.

    Article  Google Scholar 

  10. Kugel, V. D. and Cross, L. E. (1998) Behavior of soft piezoelectric ceramics under high sinusoidal electric fields, J. Appl. Phys. 84, 2815–2830.

    Article  Google Scholar 

  11. Zaitseva, M. P., Kokorin, Y. I., Sandler, Y. M., Zrazhevskii, V. M., Sorokin, B. P., and Si’soev, A. M. (1986) Nonlinear electro-mechanical properties of noncentrosymmetric crystals (in Russian), Nauka, Novosibirsk.

    Google Scholar 

  12. Damjanovic, D. (1997) Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics, J. Appl. Phys. 82, 1788–1797.

    Article  Google Scholar 

  13. Preisach, F. (1935) Über die magnetische Nachwirkung, Z. Physik 94, 277–302.

    Article  Google Scholar 

  14. Mayergoyz, I. D., (1991) Mathematical Models of Hysteresis, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  15. Ge, P. and Jouaneh, M. (1995) Modeling hysteresis in piezoceramic actuators, Precission Engineering 17, 211–221.

    Article  Google Scholar 

  16. Ge, P. and Jouaneh, M. (1997) Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators, Precision Engineering 20, 99–111.

    Article  Google Scholar 

  17. Royston, T. J. and Houston, B. H. (1998) Modeling and measurement of nonlinear dynamic behavior in piezoelectric ceramics with applications to 1–3 composites, J. Acoust. Soc. Am. 104, 2814–2827.

    Article  Google Scholar 

  18. Néel, L. (1942) Théories des lois d’aimantation de Lord Rayleigh, Cahiers Phys. 12, 1–20.

    Google Scholar 

  19. Jiles, D., (1991) Introduction to magnetism and magnetic materials, Chapman and Hall, London.

    Book  Google Scholar 

  20. Taylor, D. V., Damjanovic, D., and Setter, N. (1999) Nonlinear contributions to dielectric and piezoelectric properties in lead zirconate titanate thin films, Ferroelectrics 224, 299–306.

    Article  Google Scholar 

  21. Taylor, D. V. and Damjanovic, D. (1998) Domain wall pinning contribution to the nonlinear dielectric permittivity in Pb(Zr,Ti)O3 thin films, Appl. Phys. Lett. 73, 2045–2047.

    Article  Google Scholar 

  22. Rammel, R. and Souletie, J. (1982) Spin Glasses in Magnetism of metals and alloys, edited by Cyrot M. (North-Holland, Amsterdam, 1982), p. 379–486.

    Google Scholar 

  23. Turik, A. V. (1963) Theory of polarization and hysteresis of ferroelectrics, Soviet Phys.-Solid State 5, 885–887.

    Google Scholar 

  24. Turik, A. V. (1964) A statistical method for the investigation of repolarization processes in ferroelectric ceramics, Soviet Phys.-Solid State 5, 1751–1753.

    Google Scholar 

  25. Turik, A. V. (1964) Experimental investigation of the statistical distribution of domains in a ferroelectric ceramic, Soviet Phys.-Solid State 5, 2141–2143.

    Google Scholar 

  26. Saito, Y. (1995) Measurements of complex piezoelectric d33 constant in ferroelectric ceramics under high electric field driving, Jpn. J. Appl. Phys. 34, 5313–5319.

    Article  Google Scholar 

  27. Li, S., Cao, W., and Cross, L. E. (1991) The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic, J. Appl. Phys. 69, 7219–7224.

    Article  Google Scholar 

  28. Robels, U., Zadon, C., and Arlt, G. (1992) Linearization of dielectric nonlinearity by internal bias field, Ferroelectrics 133, 163–168.

    Article  Google Scholar 

  29. Boser, O. (1987) Statistical theory of hysteresis in ferroelectric materials, J. Appl. Phys. 62, 1344–1348.

    Article  Google Scholar 

  30. Kronmüller, H. (1970) Statistical theory of Rayleigh’s law, Z. Angew. Phys. 30, 9–13.

    Google Scholar 

  31. Demartin, M. and Damjanovic, D. (1996) Dependence of the direct piezoelectric effect in coarse and fine grain barium titanate ceramics on dynamic and static pressure, Appl. Phys. Lett. 68, 3046–3048.

    Article  Google Scholar 

  32. Taylor, D. V. (1999), Dr. Sci. Thesis, Swiss Federal Institute of Technology,.

    Google Scholar 

  33. Arlt, G. and Pertsev, N. A. (1991) Force constant and effective mass of 90° domain walls in ferroelectric ceramics, J. Appl. Physics. 70, 2283–2289.

    Article  Google Scholar 

  34. Chu, F., Damjanovic, D., and Setter, N. (1995) An investigation of dielectric and piezoelectric properties of Bi4Ti3O12+Bi3TiNbO9 ceramics, Proceedings of Fourth Euroceramics (Gruppo Editoriale Feanza Editrice), p. 197–202.

    Google Scholar 

  35. Chu, F., Damjanovic, D., Steiner, O., and Setter, N. (1995) Piezoelectricity and phase transitions of the mixed-layer bismuth titanate niobate Bi7Ti4NbO21, J. Am. Ceram. Soc. 78, 3142–3144.

    Article  Google Scholar 

  36. Damjanovic, D., Chu, F., Taylor, D. V., Demartin Maeder, M., Sagalowicz, L., and Duran Martin, P. (1999) Engineering of piezoelectric properties in ferroelectric ceramics and thin films, Bol. Soc. Esp. Cer. Vid., in print.

    Google Scholar 

  37. Carl, K. and Haerdtl, K. H. (1978) Electrical after-effects in Pb(Ti,Zr)O3 ceramics, Ferroelectrics 17, 473–486.

    Article  Google Scholar 

  38. Al-Shareef, H. N., Dimos, D., Warren, W. L., and Tuttle, B. A. (1997) A model for optical and electrical polarization fatigue in SrBi2Ta2O9 and Pb(Zr,Ti)O3, Integrated Ferroelectrics 15, 53–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Damjanovic, D. (2000). Nonlinear Piezoelectric Response in Ferroelectric Ceramics. In: Galassi, C., Dinescu, M., Uchino, K., Sayer, M. (eds) Piezoelectric Materials: Advances in Science, Technology and Applications. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4094-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4094-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6213-5

  • Online ISBN: 978-94-011-4094-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics