Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 76))

Abstract

The physical properties of all the materials are well known to be determined by their symmetry. The lower the symmetry, the richer the palette of material physical properties. On the other hand, the lower is the symmetry of a system, the more ordered it is. Certainly, living organic materials are highly ordered, and one may expect properties characteristic for low-symmetry materials, such as, for example, piezoelectric and pyroelectric effects. People began to be interested in this problem very long ago. Pasteur was probably the first to suggest over 100 years ago that biological systems have chiralic dissymmetric properties and that these properties are important for the functioning of the biological systems. Much later, researchers began to study piezolectric, pyroelectric, and ferroelectric properties of biological materials.

You may say anything you like but we all are made up of ferroelectrics B.T. Matthias

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fukuda, E. and Yasuda, I. (1964) Piezoelectric effect in collagen, Jap. J. Appl. Phys. 3, 117–121.

    Article  Google Scholar 

  2. Shamos, M.H. and Lavine, L.S. (1967) Piezoelectricity as a fundamental property of biological tissues, Nature 213, 267–269.

    Article  Google Scholar 

  3. Williams, W.S. (1982) Piezoelectric effects in biological materials, Ferroelectrics 41, 225–246.

    Article  Google Scholar 

  4. Lang, S. (1966) Pyroelectric effect in bone and tendon, Nature 212, 704–705.

    Article  Google Scholar 

  5. Lang, S.B. and Athenstaedt, H. (1978) Anomalous pyroelectric behavior in theleaves of the palm-like plant, Ferroelectrics 17, 511–519.

    Article  Google Scholar 

  6. Athenstaed, H. (1970) Permanent longitudinal electric polarization and pyroelectric behavior of collagenous structures and nervous tissue in man and other vertebrates, Nature 228, 830–834.

    Article  Google Scholar 

  7. Anhenstaed, H. (1976) Pyroelectric sensors of organisms, Ferroelectrics 11, 365–369.

    Article  Google Scholar 

  8. Anthenstaed, H. (1976) Pyroelectric properties of wheat, Ferroelectrics 14, 753-759.

    Article  Google Scholar 

  9. Lang, S. (1981) Pyroelectricity: occurrence in biological material and possible physiological applications, Ferroelectrics 34, 3–9.

    Article  Google Scholar 

  10. Lang, S.B. (1969) Thermal expansion coefficients and the primary and secondary pyroelectric coefficients of animal bone, Nature 224, 798–799.

    Article  Google Scholar 

  11. Polonsky, J., Douzou, P., and Sadron, C. (1960) Mise en évidence de propriétés ferroélectriques dans DNA, C.R. Acad. Sci. 250, 3414–3416.

    Google Scholar 

  12. Stanford, A.L. and Lorey, R.A. (1968) Evidence of ferroelectricity in RNA, Nature 219, 1250–1251.

    Article  Google Scholar 

  13. Leuchtag, H.R. (1988) A proposed physical explanation of the activation of sodium channels, Ferroelectrics 86, 105–113.

    Article  Google Scholar 

  14. Tokimoto, T. and Shirane, K. (1993) Ferroelectric diffused electrical bilayer model for membrane excitation, Ferroelectrics 146, 73–80.

    Article  Google Scholar 

  15. Gurskaya, G.V. (1968) The molecular structure of amino acids: determination by X-ray diffraction analysis, Consultant Bureau, New York.

    Google Scholar 

  16. Simpson, H.J. and Marsh, R.E. (1966) The crystal structure of L-alanine, Acta Cryst. 20, 550–555.

    Article  Google Scholar 

  17. Derissen, J.L., Endeman, H.J., and Peerdeman, A.F. (1968) The crystal and molecular structure of L-aspartic acid, Acta Cryst. B24, 1349–1354.

    Google Scholar 

  18. Khavas, B. (1970) The unit cell and space group of L-methionine, L-β-phenylalanine, and DL-tyrosine, Acta Cryst. B26, 1919–1922.

    Google Scholar 

  19. Khavas, B. (1985) X-ray study of L-phenylalanine dimorph and D-tryptophane, Ind. J. Phys. 59A, 219–226.

    Google Scholar 

  20. Chaney, M.O. and Steinranf, L.K. (1974) The crystal and molecular structure of tetragonal L-cystine, Acta Cryst. B30, 711–716.

    Google Scholar 

  21. Maddin, J.J., McGandy, E.L., and Seeman, N.C. (1972) The crystal structure of the orthorhombic form of L-(+)Histidine, Acta Cryst. B28, 2377–2382.

    Google Scholar 

  22. Maddin, J.J., McGandy, E.L., and Seeman, N.C. (1972) The crystal structure of the monoclinic form of L-histidine, Acta Cryst. B28, 2382–2389.

    Google Scholar 

  23. Harding, M.M. and Long, H.A. (1968) The crystal structure of L-cysteine, Acta Cryst. B24, 1096–l102.

    Google Scholar 

  24. Kerr, K.A., Ashmore, J.P., and Koetzie, T.F. (1975) A neutron diffraction study of L-cysteine, Acta Cryst. B31, 2022–2026.

    Google Scholar 

  25. Torii, K. and Iitaka, Y. (1971) The crystal structure of L-isoleucine, Acta Cryst. B27, 2237–2246.

    Google Scholar 

  26. Khawas, B. (1971) X-ray study of L-arginine HCl, L-cysteine, DL-lysine, and DL-phenylalanine, Acta Cryst. B27, 1517–1520.

    Google Scholar 

  27. Benedetti, E., Pedone, C., and Sirigu, A. (1973) The crystal structure of DL-isoleucine and structural relation between racemic and optically active pairs in some aminoacids, Acta Cryst. B29, 730–733.

    Google Scholar 

  28. Harding, M.M. and Howieson, R.M.(1976) L-leucine, Acta Cryst. B32, 633–634.

    Google Scholar 

  29. Delfino, M. (1978) A comprehencive optical secod harmonic generation study of the non-centrosymmetric character of biological structures, Mol. Cryst.Liq. Cryst. 52, 271–284.

    Article  Google Scholar 

  30. Vasilescu, D., Cornillon, R., and Mallet, G. (1970) Piezoelectric resonances in amino-acids, Nature 225, 635.

    Article  Google Scholar 

  31. Fousek, J. (1991) Ferroelectricity: remarks on hystorical aspects and present trends, Ferroelectrics 113, 3–20.

    Article  Google Scholar 

  32. Sworakowski, J. (1992) Ferroelectricity and related properties of molecular solids, Ferroelectrics 128, 295–306.

    Article  Google Scholar 

  33. Silvestrova, I.M., Nabakhtiani, G.N., Kozin, V.B., Kuznetsov, V.A., and Pisarevsky, Y.V. (1992) Elastic, piezoelectric, and dielectric properties of LAP crystals, Kristallographia 37, 1535–1541.

    Google Scholar 

  34. Gladky, V.V. and Zholudev, I.S. (1965) Pyroelectric properties of some single crystals, Kristall ographia 10, 63–67.

    Google Scholar 

  35. Barlew, C., Spasov, V., and Teravitcharova, S. (1994) Pyro-and ferroelectric properties of nGly MeCl2 2H2O, Ferroelectrics 158, 157–162.

    Article  Google Scholar 

  36. Pepinsky, R., Vedam, K., Hoshino, S., and Okaya, Y. (1958) Ferroelectricity in di-glycine nitrate, Phys.Rev. 111, 430–431.

    Article  Google Scholar 

  37. Baran, J., Sledez, M., Jakubas, R., and Bator, G. (1997) Ferroelectric phase transition in deuterated glycinium phosphate, Phys. Rev. B51, 169–172.

    Google Scholar 

  38. Kehrer, A. and Weiss, A. (1990) The pyroelectric coefficient of Gly-L-Ala HBr H2O and Gly-L-Ala HI H2O, Ferroelectrics 106, 405–410.

    Article  Google Scholar 

  39. Makita, Y. (1965) Ferroelectricity in TSCC, J. Phys. Soc. Jap. 20, 2073–2080.

    Article  Google Scholar 

  40. Schaak, G. (1990) Betaine compounds, Ferroelectrics 104, 147–158.

    Article  Google Scholar 

  41. Balashova, E.V., Lemanov, V.V., Albers, J., and Kloepperpieper, A. (1998) Ultrasonic study of betaine compounds, Ferroelectrics 208–209, 63–81.

    Article  Google Scholar 

  42. Miglory, A., Maxton, P.M., Clogston, A.M., Zimgiebl, E., and Lowe, M. (1998) Anomalous Temperature dependence in the Raman spectra of L-alanine: evidence for dynamic localization, Phys. Rev. B38, 13464–13467.

    Google Scholar 

  43. Kwok, R.S., Maxton, P., and Miglory, A. (1990) Thermal conductivity of single crystal L-alanine, Sol. St. Commun. 74, 1193–1195.

    Article  Google Scholar 

  44. Moreno, J.D., et al. (1997) Pressure induced phase transitions in monohydrate L-asparagine amino acid crystals, Sol. St. Commun. 103, 655–657.

    Article  Google Scholar 

  45. Winkler, E., Etchegon, P., Feinstein, A., and Fainstein, C. (1998) Luminescence and resonant Raman scattering of colour centers in irradiated crystalline L-alanine, Phys. Rev. B57, 13477–13483.

    Google Scholar 

  46. Lemanov, V.V. and Popov, S.N. (1998) Unusual electromechanical effects in glycine, Fiz. Tverd. Tela 40, 1086–1089. (Phys. Sol. State 40, N 6.)

    Google Scholar 

  47. Lemanov, V.V. and Popov, S.N. (1998) Phonon echo in L-alanine, Fiz. Tverd. Tela 40, 2119–2120. (Phys.Sol.State 40, 1921–1922.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lemanov, V.V. (2000). Piezo-, Pyro-, and Ferroelectricity in Biological Materials. In: Galassi, C., Dinescu, M., Uchino, K., Sayer, M. (eds) Piezoelectric Materials: Advances in Science, Technology and Applications. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4094-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4094-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6213-5

  • Online ISBN: 978-94-011-4094-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics