Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 229))

  • 132 Accesses

Abstract

Heart rate variability (HRV) is in part the result of numerous and complex rhythmical oscillations that can be extracted from time series with spectral methodology (1,2,3). This approach in the frequency domain has made it possible to indirectly explore the neural regulation of cardiovascular function and in particular to assess the changes in sympathovagal balance (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Cohen RJ: Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 1981;213:220–222

    Article  PubMed  CAS  Google Scholar 

  2. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog. Circ Res 1986;58:178–193

    Article  Google Scholar 

  3. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Research Advances Series, Circulation 1991;84:482–492

    Article  PubMed  CAS  Google Scholar 

  4. Goldberger AL, West BJ. Applications of non linear dynamics to clinical cardiology. Ann NY Acad Sci 1987;504:195–213.

    Article  PubMed  CAS  Google Scholar 

  5. Sugihara G, Allan W, Sobel D, Allan KD. Non-linear control of heart rate variability in human infants. Proc Natl Acad Sci 1996;93:2608–2613.

    Article  PubMed  CAS  Google Scholar 

  6. Guzzetti S, Signorini MG, Cogliati C, Mezzetti S, Porta A, Cerutti S, Malliani A: Nonlinear dynamics and chaotic indices in heart rate variability of normal subjects and heart-transplanted patients. Cardiovasc Res 1996;31:441–446.

    PubMed  CAS  Google Scholar 

  7. Denton TA, Diamond GA, Helfant RH, Khan S, Karagueuzian H: Fascinating rhythm: A primer on chaos theory and its application to cardiology. Am Heart J 1990; 120:1419–1440

    Article  PubMed  CAS  Google Scholar 

  8. Glass L, Mackey MC. From clock to chaos: the rhythms of life. Princeton University Press. Princeton, 1998.

    Google Scholar 

  9. May RM. Simple mathematical models with very complicated dynamics. Nature 1976;261:459–467.

    Article  PubMed  CAS  Google Scholar 

  10. Guevara MR, Shrier A, Glass L. Phase-locked rhythms in periodically stimulated heart cell aggregates. Am J Physiol 1988;254:H1–H10.

    PubMed  CAS  Google Scholar 

  11. Porta A, Baselli G, Montano N, Gnecchi-Ruscone T, Lombardi F, Malliani A, Cerutti S. Classification of coupling patterns among spontaneous rhythms and ventilation in the sympathetic discharge of decerebrate cats. Biol Cyber 1996;75:163–172.

    Article  CAS  Google Scholar 

  12. Montano N, Lombardi F, Gnecchi-Ruscone T, Contini M, Finocchiaro ML, Baselli G, Porta A, Cerutti S, Malliani A. Spectral analysis of sympathetic discharge, R-R-interval and systolic arterial pressure in decerebrate cats. J Autonom Nerv Syst 1992;40:21–32

    Article  CAS  Google Scholar 

  13. Kitney RI, Bignall S. Techniques for studying short-term changes in cardio-respiratory data. In: Di Rienzo et al. (eds) Blood pressure and heart rate variability. IOS Press, Amsterdam, 1992 pp 1–23.

    Google Scholar 

  14. Pincus SM. Approximated entropy as a measure of system complexity. Proc Natl Acad Sci USA 1991;88:2297–2311

    Article  PubMed  CAS  Google Scholar 

  15. Porta A, Baselli G, Liberati D, Montano N, Cogliati C, Gnecchi-Ruscone T, Malliani A, Cerutti S. Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol Cybern 1998;78:71–78

    Article  PubMed  CAS  Google Scholar 

  16. Porta A, Baselli G, Guzzetti S, Magatelli R, Montano N, Cogliati C, Malliani A, Cerutti S. Synchronisation analysis of heart rate period variability signal based on corrected conditional entropy. Computers in Cardiology, IEEE Computer Society Press, Los Alamitos, California, 1997:24; 121–124

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Malliani, A., Porta, A., Montano, N., Guzzetti, S. (2000). Heart Rate Variability and Nonlinear Dynamics. In: Osterhues, HH., Hombach, V., Moss, A.J. (eds) Advances in Noninvasive Electrocardiographic Monitoring Techniques. Developments in Cardiovascular Medicine, vol 229. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4090-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4090-4_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5796-7

  • Online ISBN: 978-94-011-4090-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics