Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 229))

  • 135 Accesses

Abstract

The autonomic nervous system is concerned primarily with the unconscious regulation of bodily functions. Both afferent and efferent nervous impulses travel in both autonomic divisions and subserve reflexes that are important to the normal function of the various systems, including cardiovascular, respiratory, digestive and genito-urinary. Activity in the two divisions is often complementary. For example, as parasympathetic activity to the heart decreases, sympathetic activity increases. Changes in autonomic nervous activity occur frequently in disease processes and may be a cause, an effect or a modulating influence on the course of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy MN, Martin PJ, Iano T. Effects of single vagal stimuli on heart rate and atrioventricular conduction. Am J Physiol 1970; 218: 1256–1262.

    PubMed  CAS  Google Scholar 

  2. Parker P, Celler BG, Potter EK, McClosky DI. Vagal stimulation and cardiac slowing J Auton Nerv Syst. 1984; 11: 226–231.

    Article  PubMed  CAS  Google Scholar 

  3. Furnival CM, Linden RJ, Snow HM. Chronotropic and inotropic effects on the dog heart of stimulating the efferent cardiac sympathetic nerves. J Physiol. 1973; 230: 137–153.

    PubMed  CAS  Google Scholar 

  4. Karim F, Hainsworth R. Responses of abdominal vascular capacitance to stimulation of splanchnic nerves. Am J Physiol. 1976; 231: 434–440.

    PubMed  CAS  Google Scholar 

  5. Drinkhill MJ, Moore J, Hainworth R. Afferent discharges from coronary arterial and ventricular receptors in anaesthetized dogs. J Physiol. 1993; 472: 785–800.

    PubMed  CAS  Google Scholar 

  6. Al-Timman JKA, Drinkhill MJ, Hainsworth R. Reflex responses to stimulation of mechanoreceptors in the left ventricle and coronary arteries in anaethetized dogs. J Physiol. 1993; 472: 769–784.

    PubMed  CAS  Google Scholar 

  7. Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man. A quantatitive method of assessing baroreceptor sensitivity. Circulation Res. 1969; 24: 109–121.

    Article  PubMed  CAS  Google Scholar 

  8. Kelly AP, El-Bedawi KM, Hainsworth R. An improved neck chamber for the study of carotid baroreceptors in humans. J Physiol. 1993; 467: 142P.

    Google Scholar 

  9. Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Res. 1986; 59: 178–193.

    Article  PubMed  CAS  Google Scholar 

  10. Eckberg DL. Temporal response patterns of the human sinus node to brief carotid baroreceptor stimuli. J Physiol. 1978; 258: 769–782.

    Google Scholar 

  11. Eckberg DL, Kifle YT, Roberts VL. Phase relationship between normal human respiration and baroreflex responsiveness. J Physiol. 1980. 304: 489–502.

    PubMed  CAS  Google Scholar 

  12. Chapleau MW, Abboud FM. Mechanisms of adaption and resetting of the baroreceptor reflex. In: Hainsworth R, Marks AL (Eds). Cardiovascular Reflex Control in Health and Disease. London, England: Saunders, 1993; 165–194.

    Google Scholar 

  13. La Rovere MT, Spechia G, Motara A, Schwartz PJ. Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction: a prospective study. Circulation. 1998; 78: 816–824.

    Article  Google Scholar 

  14. Farrell TG, Odemuyiwa O, Bashir Y, Cripps TR, Malik M, Ward DE, Camm AJ. Prognostic value of baroreflex sensitivity testing after acute myocardial infarction. Br Heart J. 1992; 67: 129–137.

    Article  PubMed  CAS  Google Scholar 

  15. Vatner SF, Boettcher DH, Heyndrickx GR, McRitchie RJ. Baroreflex sensitivity with volume loading in conscious dogs. Circulation Res. 1975; 37: 236–242.

    Article  PubMed  CAS  Google Scholar 

  16. El-Sayed H, Hainsworth R. Relationship between plasma volume, carotid baroreceptor sensitivity and orthostatic tolerance. Clin Sci. 1995; 88: 463–470.

    PubMed  CAS  Google Scholar 

  17. Bainbridge FA. The influence of venous filling upon the rate of the heart. J Physiol. 1915; 50: 65–84.

    PubMed  CAS  Google Scholar 

  18. Ledsome JR, Linden RJ. A reflex increase in heart rate from distension of the pulmonary vein-atrial junctions. J Physiol. 1964; 170: 456–473.

    PubMed  CAS  Google Scholar 

  19. Carswell F, Hainsworth R, Ledsome JR. The effects of distension of the pulmonary vein-atrial junctions upon peripheral vascular resistance. J Physiol. 1970; 207: 1–14.

    PubMed  CAS  Google Scholar 

  20. Sreeharan N, Kappagoda CT. Linden RJ. The role of renal nerves in the diuresis and natriuresis caused by stimulation of atrial receptors. Q J Exp Physiol. 1981; 66: 431–438.

    PubMed  Google Scholar 

  21. Bennett KL, Linden RJ, Mary DASG. The effect of stimulation of atrial receptors on the plasma concentration of vasopressin. Q J Exp Physiol. 1983; 68: 579–589.

    PubMed  CAS  Google Scholar 

  22. Zucker IH, Earle AM, Gilmore JP. The mechanism of adaption of left atrial stretch receptors in dogs with chronic congestive heart failue. J Clin Invest. 1977; 60: 323–331.

    Article  PubMed  CAS  Google Scholar 

  23. Coleridge HM, Coleridge JCG, Kidd C. Cardiac receptors in the dog, with particular reference to two types of afferent ending in the ventricular wall. J Physiol. 1964; 174: 323–339.

    PubMed  CAS  Google Scholar 

  24. Banzett RB, Coleridge HM, Coleridge JCG, Kidd C. Multiterminal afferent fibres from the thoracic viscera in sympathetic rami communicantes in cats and dogs. J Physiol. 1976; 254: 57P.

    Google Scholar 

  25. Kaufman MP, Baker DG, Coleridge HM. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res. 1980; 46: 476–484.

    Article  PubMed  CAS  Google Scholar 

  26. Oberg B, Thoren P. Studies on left ventricular receptors signalling in non-medullated vagal afferents. Acta Physiol Scand. 1972; 85: 145–163.

    Article  PubMed  CAS  Google Scholar 

  27. Hainsworth R. Reflexes from the heart. Physiol Rev. 1991; 71: 617–658.

    PubMed  CAS  Google Scholar 

  28. George M, Greenwood TW. Relation between bradycardia and the site of myocardial infarction. Lancet. 1967; 2: 739–740.

    Article  PubMed  CAS  Google Scholar 

  29. Webb SW, Adgey AA, Pantridge JF. Autonomic disturbance at onset of acute myocardial infarction. Br Med J. 1972; 3: 89–92.

    Article  PubMed  CAS  Google Scholar 

  30. Oberg B, Thoren P. Increased activity in left ventricular receptors during hemorrhage or occlusion of caval veins in the cat. A possible cause of the vaso-vagal reaction. Acta Physiol Scand. 1972; 85: 164–173.

    Article  PubMed  CAS  Google Scholar 

  31. Al-Timman JKA, Drinkhill MJ, Hainsworth R. Reflex vascular responses to changes in left ventricular pressure, heart rate and inotropic state in dogs. Exp Physiol. 1992; 77: 455–469.

    PubMed  CAS  Google Scholar 

  32. Fitzpatrick AP, Banner N, Cheung A, Yacoub M, Sutton R. Vasovagal reactions may occur after othotopic heart transplantation. J Am Coll Cardiol. 1993; 177: 203–214.

    Google Scholar 

  33. Hainsworth R, Jacobs L, Comroe JH Jr. Afferent lung denervation by brief inhalation of steam. J Appl Physiol 1973; 34: 708–714.

    PubMed  CAS  Google Scholar 

  34. Ledsome JR, Kan K. Reflex changes in hind limb and renal vascular resistances to distension of the isolated pulmonary arteries of the dog. Circulation Res. 1977; 40: 64–72.

    Article  PubMed  CAS  Google Scholar 

  35. Vatner SF, Pagani M. Cardiovascular adjustments to exercise: hemodynamics and mechanisms. Prog Cardiovasc Dis. 1976; 29: 91–188.

    Article  Google Scholar 

  36. Saltin B, Blomqvist G, Mitchell JH, Johnson RL, Willenthal K, Chapman CB. Response to exercise after bedrest and after training. Circulation. 1968; 37 (supp 7): 1–55.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hainsworth, R. (2000). Autonomic Nervous System: Physiology and Pathophysiology. In: Osterhues, HH., Hombach, V., Moss, A.J. (eds) Advances in Noninvasive Electrocardiographic Monitoring Techniques. Developments in Cardiovascular Medicine, vol 229. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4090-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4090-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5796-7

  • Online ISBN: 978-94-011-4090-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics