Skip to main content

Heart Failure: From Gene to Therapy

  • Chapter
  • 129 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 229))

Abstract

Congestive heart failure is the final endstage of various cardiac diseases with varying pathologies resulting in impaired systolic and diastolic function, activation of neurohumoral pathways, and high morbidity and mortality. The pathogenic processes leading to altered structure of the heart in the development of heart failure with systolic dysfunction has been termed “ventricular remodeling”. This concept relates to a complex of anatomical, physiological, histological and molecular changes of the myocardium in response to injury and increased wall stress (Fig. 1). Our understanding of ventricular remodeling has rapidly progressed from initial bedside observation of large hearts and edema in patients with heart disease to studies of the mechanical consequences of increased volumes, hemodynamic changes and wall stress in the failing left ventricle. Following the discovery of the neurohumoral activation in heart failure, more recently, attention has been attracted to the molecular and genetic alterations that promote further detoriation of the function of the heart and that determine the inexorable course to end-stage heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE: A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 1990;62:999–1006

    Article  PubMed  CAS  Google Scholar 

  2. Solomon SD, Geisterfer-Lowrance AA, Vosberg HP, Hiller G, Jarcho JA, Morton CC, McBride WO, Mitchell AL, Bale AE, McKenna WJ: A locus for familial hypertrophic cardiomyopathy is closely linked to the cardiac myosin heavy chain genes, CRI-L436, and CRI-L329 on chromosome 14 at q11–q12. Am.J.Hum.Genet. 1990;47:389–394

    PubMed  CAS  Google Scholar 

  3. Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, Corvol P: Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc.Natl.Acad.Sci.U.S.A. 1988;85:9386–9390

    Article  PubMed  CAS  Google Scholar 

  4. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F: An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half of th variance of serum enzyme levels. J.Clin.Invest. 1990;86:1343–1346

    Article  PubMed  CAS  Google Scholar 

  5. Schunkert H, Hense HW, Holmer SR, Stender M, Perz S, Keil U, Lorell BH, Riegger GA: Association between a deletion polymorphism of the angiotensin- converting-enzyme gene and left ventricular hypertrophy. N.Engl.J.Med. 1994;330:1634–1638

    Article  PubMed  CAS  Google Scholar 

  6. Raynolds MV, Bristow MR, Bush EW, Abraham WT, Lowes BD, Zisman LS, Taft CS, Perryman MB: Angiotensin-Converting enzyme DD genotype in patients with ischaemic or idiopathic dilated cardiomyopathy. Lancet 1993;342:1073–1075

    Article  PubMed  CAS  Google Scholar 

  7. Andersson B, Sylven C: The DD genotype of the angiotensin-converting enzyme gene is associated with increased mortality in idiopathic heart failure. J.Am.Coll.Cardiol. 1996;28:162–167

    Article  PubMed  CAS  Google Scholar 

  8. Raynolds MV, Perryman MB: The role of genetic variants in angiotensin I converting enzyme, angiotensinogen and the angiotensin II type-1 receptor in the pathophysiology of heart muscle disease. Eur.Heart J. 1995; 16 Suppl K:23–30

    Article  PubMed  Google Scholar 

  9. Tiret L, Bonnardeaux A, Poirier O, Ricard S, Marques-Vidal P, Evans A, Arveiler D, Luc G, Kee F, Ducimetiere P: Synergistic effects of angiotensin-converting enzyme and angiotensin-II type 1 receptor gene polymorphisms on risk of myocardial infarction. Lancet 1994;344:910–913

    Article  PubMed  CAS  Google Scholar 

  10. Böhm M, Lohse MJ: Quantification of beta-adrenoceptors and beta-adrenoceptor kinase on protein and mRNA levels in heart failure. Eur.Heart J. 1994; 15 Suppl D:30–34

    Article  PubMed  Google Scholar 

  11. Collins JF, Pawloski-Dahm C, Davis MG, Ball N, Dorn GW, Walsh RA: The role of the cytoskeleton in left ventricular pressure overload hypertrophy and failure. J.Mol.Cell Cardiol. 1996;28:1435–1443

    Article  PubMed  CAS  Google Scholar 

  12. Nickenig G, Wolff M, Böhm M: Enhanced expression and autoimmunity of recombinant binding protein-jκ in human dilated cardiomyopathy. Circulation 1998;98(suppl):1–406

    Article  Google Scholar 

  13. Böhm M, Eschenhagen T, Gierschik P, Larisch K, Lensche H, Mende U, Schmitz W, Schnabel P, Scholz H, Steinfath M: Radioimmunochemical quantification of Gi alpha in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. J.Mol.Cell Cardiol. 1994;26:133–149

    Article  PubMed  Google Scholar 

  14. Stiles GL, Taylor S, Lefkowitz RJ: Human cardiac beta-adrenergic receptors: subtype heterogeneity delineated by direct radioligand binding. Life Sci. 1983;33:467–473

    Article  PubMed  CAS  Google Scholar 

  15. Ihl-Vahl R, Eschenhagen T, Kubler W, Marquetant R, Nose M, Schmitz W, Scholz H, Strasser RH: Differential regulation of mRNA specific for beta 1- and beta 2-adrenergic receptors in human failing hearts. Evaluation of the absolute cardiac mRNA levels by two independent methods. J Mol Cell Cardiol. 1996;28:1–10

    Article  PubMed  CAS  Google Scholar 

  16. Pende A, Tremmel KD, De MC, Blaxall BC, Minobe WA, Sherman JA, Bisognano JD, Bristow MR, Brewer G, Port J: Regulation of the mRNA-binding protein AUF1 by activation of the beta-adrenergic receptor signal transduction pathway. J Biol.Chem. 1996;271:8493–8501

    Article  PubMed  CAS  Google Scholar 

  17. Evanko DS, Ellis CE, Venkatachalam V, Frielle T: Preliminary analysis of the transcriptional regulation of the human beta 1-adrenergic receptor gene. Biochem.Biophys.Res.Commun. 1998;244:395–402

    Article  PubMed  CAS  Google Scholar 

  18. Danner S, Lohse MJ: Cell type-specific regulation of beta2-adrenoceptor mRNA by agonists. Eur.J.Pharmacol. 1997;331:73–78

    Article  PubMed  CAS  Google Scholar 

  19. Danner S, Frank M, Lohse MJ: Agonist regulation of human beta2-adrenergic receptor mRNA stability occurs via a specific AU-rich element. J.Biol.Chem. 1998;273:3223–3229

    Article  PubMed  CAS  Google Scholar 

  20. Müller FU, Boheler KR, Eschenhagen T, Schmitz W, Scholz H: Isoprenaline stimulates gene transcription of the inhibitory G protein alpha-subunit Gi alpha-2 in rat heart. Circ.Res. 1993;72:696–700

    Article  PubMed  Google Scholar 

  21. Eschenhagen T, Friedrichsen M, Gsell S, Hollmann A, Mittmann C, Schmitz W, Scholz H, Weil J, Weinstein LS: Regulation of the human Gi alpha-2 gene promotor activity in embryonic chicken cardiomyocytes. Basic.Res.Cardiol. 1996;91 Suppl 2:41–46

    Article  PubMed  CAS  Google Scholar 

  22. Weinstein LS, Spiegel AM, Carter AD: Cloning and characterization of the human gene for the alpha-subunit of Gi2, a GTP-binding signal transduction protein. FEBS Lett. 1988;232:333–340

    Article  PubMed  CAS  Google Scholar 

  23. Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW, Walsh RA, Kranias EG: Cardiacspecific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J.Clin.Invest. 1996;97:533–539

    Article  PubMed  CAS  Google Scholar 

  24. Movsesian MA, Schwinger RH: Calcium sequestration by the sarcoplasmic reticulum in heart failure. Cardiovasc.Res. 1998;37:352–359

    Article  PubMed  CAS  Google Scholar 

  25. Lalli J, Harrer JM, Luo W, Kranias EG, Paul RJ: Targeted ablation of the phospholamban gene is associated with a marked decrease in sensitivity in aortic smooth muscle. Circ.Res. 1997;80:506–513

    Article  PubMed  CAS  Google Scholar 

  26. Wankerl M, Schwartz K: Calcium transport proteins in the nonfailing and failing heart: gene expression and function. J Mol Med 1995;73:487–496

    Article  PubMed  CAS  Google Scholar 

  27. Schwinger RH, Böhm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E: Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 1995;92:3220–3228

    Article  PubMed  CAS  Google Scholar 

  28. Wu KD, Lee WS, Wey J, Bungard D, Lytton J: Localization and quantification of endoplasmic reticulum Ca2+-ATPase isoform transcripts. Am.J.Physiol. 1995;269:C775–C784

    PubMed  CAS  Google Scholar 

  29. Flesch M, Schwinger RH, Schnabel P, Schiffer F, van Gilst W, Bavendiek U, Südkamp M, Kuhn-Regnier F, Böhm M: Sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J.Mol.Med. 1996;74:321–332

    Article  PubMed  CAS  Google Scholar 

  30. Hasenfuss G, Meyer M, Schillinger W, Preuss M, Pieske B, Just H: Calcium handling proteins in the failing human heart. Basic.Res.Cardiol. 1997;92 Suppl 1:87–93

    Article  PubMed  CAS  Google Scholar 

  31. Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K: Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J.Clin.Invest. 1990;85:305–309

    Article  PubMed  CAS  Google Scholar 

  32. Darvish A, Schomisch-Moravec SC: Decreased sarcoplasmic reticulum content in the failing human heart is associated with a decrease in the Ca2+ ATPase and phospholamban proteins. Circulation 1994;90:1–217(Abstract)

    Google Scholar 

  33. Movsesian MA, Bristow MR, Krall J: Ca2+ uptake by cardiac sarcoplasmic reticulum from patients with idiopathic dilated cardiomyopathy. Circ.Res. 1989;65:1141–1144

    Article  PubMed  CAS  Google Scholar 

  34. Movsesian MA, Karimi M, Green K, Jones LR: Ca2+-transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 1994;90:653–657

    Article  PubMed  CAS  Google Scholar 

  35. Luo W, Wolska BM, Grupp IL, Harrer JM, Haghighi K, Ferguson DG, Slack JP, Grupp G, Doetschman T, Solaro RJ, Kranias EG: Phospholamban gene dosage effects in the mammalian heart. Circ.Res. 1996;78:839–847

    Article  PubMed  CAS  Google Scholar 

  36. Luo W, Grupp WL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschmann T, Kranias EG: Target ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of β-agonist stimulation. Circ.Res. 1994;75:401–409

    Article  PubMed  CAS  Google Scholar 

  37. Bartel S, Stein B, Eschenhagen T, Mende U, Neumann J, Schmitz W, Krause EG, Karczewski P, Scholz H: Protein phosphorylation in isolated trabeculae from nonfailing and failing human hearts. Mol.Cell Biochem. 1996;157:171–179

    Article  PubMed  CAS  Google Scholar 

  38. Chien KR, Shimizu M, Hoshijima M, Minamisawa S, Grace AA: Toward molecular strategies for heart disease-past, present, future. Jpn.Circ.J. 1997;61:91–118

    Article  PubMed  CAS  Google Scholar 

  39. Liang P, Pardee AB: Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992;257:967–971

    Article  PubMed  CAS  Google Scholar 

  40. Aoki M, Morishita R, Muraishi A, Moriguchi A, Sugimoto T, Maeda K, Dzau VJ, Kaneda Y, Higaki J, Ogihara T: Efficient in vivo gene transfer into the heart in the rat myocardial infarction model using the HVJ (Hemagglutinating Virus of Japan)—liposome method. J.Mol.Cell Cardiol. 1997;29:949–959

    Article  PubMed  CAS  Google Scholar 

  41. Smith LC, Eisensmith RC, Woo SL: Gene therapy in heart disease. Adv.Exp.Med.Biol. 1995;369:79–88

    Article  PubMed  CAS  Google Scholar 

  42. Franz WM, Mueller OJ, Hartong R, Frey N, Katus HA: Transgenic animal models: new avenues in cardiovascular physiology. J.Mol.Med. 1997;75:115–129

    Article  PubMed  CAS  Google Scholar 

  43. Akhter SA, Skaer CA, Kypson AP, McDonald PH, Peppel KC, Glower DD, Lefkowitz RJ, Koch WJ: Restoration of beta-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc.Natl.Acad.Sci.U.S.A. 1997;94:12100–12105

    Article  PubMed  CAS  Google Scholar 

  44. Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A: Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation 1997;95:423–429.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zolk, O., Baudler, S., Nickenig, G., Böhm, M. (2000). Heart Failure: From Gene to Therapy. In: Osterhues, HH., Hombach, V., Moss, A.J. (eds) Advances in Noninvasive Electrocardiographic Monitoring Techniques. Developments in Cardiovascular Medicine, vol 229. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4090-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4090-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5796-7

  • Online ISBN: 978-94-011-4090-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics