Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 229))

Abstract

Although experimental evidence of a significant role of myocardial repolarisation inhomogeneity in arrhythmogenesis has been grown rapidly, progress in the clinical arena has been comparatively slow. There continues to be methodological uncertainty regarding ventricular repolarisation assessment from body surface electrocardiogram. Multiple approaches are currently being investigated for this purpose, indicating that no one satisfactory method has yet been found. Despite rapid development of sophisticated computer-assisted algorithms for QT-interval and QT-dispersion measurement, low reproducibility of repeated measurements, particularly of QT-dispersion, remains a major limitation. In recent years, some progress has been made in developing alternative methods of ventricular repolarisation assessment. Suggested approaches have focused on analysis of QT-interval variability during 24-hour Holter recording (QT/RR dynamicity) and beat-to-beat changes in the repolarisation patterns (T-wave alternans) which reflect two different aspects of ventricular repolarisation: spatial and dynamic. Simultaneous assessment of both aspects is believed to be a promising tool which allows not only to identify patients at high risk of arrhythmic events but also to investigate spontaneous or triggered changes in ventricular repolarisation leading to arrhythmias. Recent studies of T-wave alternans have documented that repolarisation patterns are closely related to arrhythmic and pro-arrhythmic complications, indicating that analysis T and TU-wave morphology may play an important role in risk stratification.

Table I Non-invasive methods for ventricular repolarisation assessment

In conclusion, further development of practical approaches to quantitative assessment of ventricular repolarisation is essential for better understanding of physiological and pathophysiological processes governing this phenomenon, and for improving of arrhythmogenic risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwartz PJ, Wolf S. QT-interval prolongation as predictor of sudden death in patients with myocardial infarction. Circulation 1978;57:1074–1077.

    Article  PubMed  CAS  Google Scholar 

  2. Moss AJ, Schwartz PJ. Delayed repolarization (QT and Q-U prolongation) and malignant ventricular arrhythmias. Mod Concepts Cardiovasc Dis 1982;51:85–90.

    PubMed  CAS  Google Scholar 

  3. Algra A, Tijssen JGP, Roelandt JRTC, et al. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation 1991;83:1888–1894.

    Article  PubMed  CAS  Google Scholar 

  4. Day CP, McComb JM, Campbell RWF. QT-dispersion: an indication of arrhythmia risk in patients with long QT-intervals. Br Heart J 1990;63:342–344.

    Article  PubMed  CAS  Google Scholar 

  5. Priori S, Napolitano C, Diehl L, Schwartz PJ. Dispersion of QT-interval. A marker of therapeutic efficacy in the idiopathic long QT syndrome. Circulation 1994;89:1681–1689.

    Article  PubMed  CAS  Google Scholar 

  6. Zareba W, Moss AJ, Le Cessie SI. Dispersion of ventricular repolarisation and arrhythmic death in coronary artery disease. Am J Cardiol 1994;74:550–553.

    Article  PubMed  CAS  Google Scholar 

  7. Fu GS, Meissner A, Simon R. Repolarization dispersion and sudden cardiac death in patients with impaired left ventricular function. Eur Heart J 1997;18:281–289.

    Article  PubMed  CAS  Google Scholar 

  8. Buja G, Miorelli M, Turrini P, et al. Comparison of QT-dispersion in hypertrophic cardiomyopathy between patients with and without ventricular arrhythmias and sudden death. Am J Cardiol 1993;72:973–976.

    Article  PubMed  CAS  Google Scholar 

  9. Gang Y, Elliot PM, Prasad K, Sharma S, et al. Computerised QT-dispersion measurement and risk stratification in patients with hypertrophic cardiomyopathy. Circulation 1997;96(Suppl): I–759

    Google Scholar 

  10. Lepeshkin E, Surawicz B. The measurement of the QT-interval of the electrocardiogram. Circulation 1952;6:378–388.

    Article  Google Scholar 

  11. Campbell RWF, Gardiner P, Amos PA, et al. Measurement of the QT-interval. Eur Heart J 1985;6 (Suppl.D):81–83.

    Article  PubMed  Google Scholar 

  12. Xue Q, Reddy S. New algorithms for QT-dispersion analysis. Proceedings of the Marquette 14th ECG Analysis Seminar 1996:20–23.

    Google Scholar 

  13. McLaughlin NB, Campbell RWF, Murray A. Comparison of automatic QT measurement techniques in the normal 12 lead electrocardiogram. Br Heart J 1995;74:84–89.

    Article  PubMed  CAS  Google Scholar 

  14. Bortolan G, Bressan M, Cavaggion C, Fusaro S. Validation of QT-dispersion algorithms and some clinical investigation. Comp Cardiol, IEEE 1996:665–668.

    Google Scholar 

  15. Batchvarov V, Gang Y, Savelieva I, Camm AJ, Malik M. The first and second differential of the T-wave are less reliable than the original signal for automatic QT measurement. Ann Noninvas Electrocardiol 1998;3:S11.

    Google Scholar 

  16. Glancy JM, Weston PJ, Bhullar HK, et al. Reproducibility and automatic measurement of QT-dispersion. Eur Heart J 1996; 17:1035–1039.

    Article  PubMed  CAS  Google Scholar 

  17. Savelieva I, Gang Y, Guo X, et al. Agreement and reproducibility of automatic versus manual measurement of QT-interval and QT-dispersion. Am J Cardiol 1998;81:471–477.

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz PJ, Priori SG. Sympathetic nervous system and cardiac arrhythmias. Chapter in DP Zipes, J Jalife (eds.): Cardiac Electrophysiology: From Cell to Bedside. Philadelphia, PA: WB Saunders, 1990:330–343.

    Google Scholar 

  19. Franz MR, Swerdlow CD, Liem LB, Shaefer J. Cycle length dependence of human action potential duration in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. J Clin Invest 1988;82:972–979.

    Article  PubMed  CAS  Google Scholar 

  20. Sarma JSM, Sarma RJ, Bilitch M, et al. An exponential formula for heart rate dependence of QT-interval during exercise and cardiac pacing in humans: Reevaluation of Bazett’s formula. Am J Cardiol 1984;54:103–108.

    Article  PubMed  CAS  Google Scholar 

  21. Todt H, Krumpl G, Krejcy K, Raberger G. Mode of QT correction for heart rate: Implications for the detection of inhomogeneous repolarization after myocardial infarction. Am Heart J 1992;124:602–609.

    Article  PubMed  CAS  Google Scholar 

  22. Viitasalo M, Karjalainen J. QT-intervals at heart rates from 50 to 120 beats per minute during 24-hour electrocardiographic recordings in 100 healthy men. Effects of atenolol. Circulation 1992;86:1439–1442.

    Article  PubMed  CAS  Google Scholar 

  23. Bexton RS, Valiin HO, Camm AJ. Diurnal variation of the QT-interval: Influence of the autonomic nervous system. Br Heart J 1986;55:253–258.

    Article  PubMed  CAS  Google Scholar 

  24. Merri M, Moss AJ, Benhorin J, et al. Relation between ventricular repolarization duration and cardiac cycle lenghth during 24-hour Holter recordings: Findings in normal patients and patients with long QT syndrome. Circulation 1992;85:1816–1821.

    Article  PubMed  CAS  Google Scholar 

  25. Kluge P, Walter T, Neugebauer A. Comparison of QT/RR relationship using two algorithms of QT-interval analysis for identification of high risk patients for life-threatening ventricular arrhythmias. Ann Noninvas Electrocardiol 1997;2:3–8.

    Article  Google Scholar 

  26. Extramiana F, Huikuri HV, Neyroad N, et al. QT rate adaptation: A new index to discriminate patients with and without ventricular arrhythmias following myocardial infarction? Circulation 1997;96(Suppl. 1): I–716.

    Google Scholar 

  27. Singh JP, Johnston J, Sleight P, et al. Left ventricular hypertrophy in hypertensive patients is associated with abnormal rate adaptation of QT-interval. J Am Coll Cardiol 1997;29:778–784.

    Article  PubMed  CAS  Google Scholar 

  28. Coumel P, Fayn J, Maison-Blanche P, Rubel P. Clinical relevance of assessing QT dy-namicity in Holter recordings. J Electrocardiol 1994; 27 (Suppl.):62–66.

    Article  PubMed  Google Scholar 

  29. Molnar J, Zhang F, Weiss J, et al. Diurnal pattern of QTc-interval: How long is prolong? Possible relation to circadian triggers of cardiovascular events. J Am Coll Cardiol 1996;27:76–83.

    Article  PubMed  CAS  Google Scholar 

  30. Gang Y, Guo X, Reardon M et al. Circadian variation of the QT-interval in patients with sudden cardiac death after myocardial infarction. Am J Cardiol 1998;81:950–956.

    Article  Google Scholar 

  31. Browne KF, Prystowsky E, Heger LL, et al. Prolongation of the QT-interval in man during sleep. Am J Cardiol 1983;52:55–59.

    Article  PubMed  CAS  Google Scholar 

  32. Ahmed MW, Kadish AH, Goldberger JJ. Autonomie effects on the QT-interval. Ann Non-invas Electrocardiol 1996;1:44–53.

    Article  Google Scholar 

  33. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 1989;79:733–743.

    Article  PubMed  CAS  Google Scholar 

  34. Molnar J, Zhang F, Weiss JS, Rosenthal J. Why not Bazett’s? Evaluation of 5 QT correction formulas using a new software assisted method of continuous QT measurement from 24-hour Holter recordings. PACE 1995; 18:852.

    Google Scholar 

  35. Surawicz B. The pathogenesis and clinical significance of primary T-wave abnormalities. Chapter in RC Schlant, JW Hurst (eds.): Advances in Electrocardiography, New York, Grune and Stratton, 1972, pp.377–421

    Google Scholar 

  36. Schwartz PJ, Malliani A. Electrical alteration of the T-wave: Clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long QT syndrome. Am Heart J 1975;89:45–50.

    Article  PubMed  CAS  Google Scholar 

  37. Zareba W, Moss AJ. T-wave alternans in idiopathic long QT syndrome. J Am Coll Cardiol 1994;23:1541–1546.

    Article  PubMed  CAS  Google Scholar 

  38. Salerno JA, Previtali M, Panciroli C, et al. Ventricular arrhythmia during acute myocardial ischemia in man. The role and significance of R-ST-T-alternans and the prevention of ischemic sudden death by medical treatment. Eur Heart J 1986;7:63–75.

    Article  PubMed  Google Scholar 

  39. Rozanski JJ, Kleinfeld M. Alternans of the ST-segment and T-wave. A sign of electrical instability in Prinzmetal’s angina. PACE 1982;5:359–365.

    Article  PubMed  CAS  Google Scholar 

  40. Rosenbaum DS, Jackson LE, Smith JM, et al. Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med 1994; 330:235–241.

    Article  PubMed  CAS  Google Scholar 

  41. Murda’h M, Nagayoshi H, Albrecht P, et al. T-wave alternans as a predictor of sudden death in hypertrophic cardiomyopathy. Circulation 1996;94 (Suppl.): I–669.

    Google Scholar 

  42. Verrier RL, Nearing BD. Electrophysiologic basis for T-wave alternans as an index of vulnerability to ventricular fibrillation. J Cardiovasc Electrophysiol 1994;5:445–461.

    Article  PubMed  CAS  Google Scholar 

  43. Abe S, Nagamoto Y, Fukuchi Y, et al. Relationship of alternans of monophasic action potential and conduction delay inside the ischemic border zone to serious ventricular arrythmia during acute myocardial ischemia in dogs. Am Heart J 1989; 117:1223–1233.

    Article  PubMed  CAS  Google Scholar 

  44. Rosenbaum DS, Albrecht P, Cohen RJ. Predicting Sudden Cardiac Death from T-wave alternans of the surface electrocardiograms: Promise and Pitfalls. J Cardiovasc Electrophysiol 1996;7:1095–1111.

    Article  PubMed  CAS  Google Scholar 

  45. Nearing BD, Huang AH, Verrier RL. Dynamic tracking of cardiac vulnerability by complex demodulation of the T-wave. Science 1991; 252:1989.

    Article  Google Scholar 

  46. Estes MNA, Zipes DP, El-Sherif N, et al. Electrical alternans during rest and exercise as a predictors of vulnerability to ventricular arrhythmias. J Am Coll Cardiol 1995; Special issue: 409A.

    Google Scholar 

  47. De Ambroggi L, Bertoni T, Locati E, et al. Mapping of the body surface potentials in patients with idiopathic long QT syndrome. Circulation 1986;74:1334–1345.

    Article  PubMed  Google Scholar 

  48. Priori SG, Mortara DW, Diehl L, et al. Quantification of ventricular repolarization: From dispersion to complexity. New Trends in Arrhythmias 1995;9 (Suppl):95–100.

    Google Scholar 

  49. Badilini F, Fayn J, Maison-Blanche P, et al. Quantitative aspects of ventricular repolarization: Relationship between three-dimensional T-wave loop morhology and scalar QT-dispersion. Ann Noninvas Electrocardiol 1997;2:146–157.

    Article  Google Scholar 

  50. Lux RL, Green LS, MacLeod RS, Taccardi B. Assessment of spatial and temporal characteristics of ventricular repolarization. J Electrocardiol 1994;27:100–105.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Savelieva, I., Malik, M. (2000). Modern Approaches to Assessment of Ventricular Repolarisation. In: Osterhues, HH., Hombach, V., Moss, A.J. (eds) Advances in Noninvasive Electrocardiographic Monitoring Techniques. Developments in Cardiovascular Medicine, vol 229. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4090-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4090-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5796-7

  • Online ISBN: 978-94-011-4090-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics