Skip to main content

Abstract

The morphology of the proximal tubule cells was covered briefly in Chapter 2, but will be considered in more detail here. The proximal tubule is divisible into the convoluted portion, or pars convoluta, which begins immediately behind the glomerulus, and the straight portion, or pars recta, which passes into the medulla to become the loop of Henle. The cells of these two portions have somewhat different structures (Figure 2.4) and there are cells of an intermediate type linking the two portions. The transport functions of the proximal tubule are primarily dependent on the pars convoluta cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Alpern R. J., Moe, O. W. and Preisig, P. A. (1995) Chronic regulation of the proximal tubular Na/H antiporter. Kidney Int. 48, 1386–1396

    Article  PubMed  CAS  Google Scholar 

  • Aukland K., Bogusky, R. T. and Renkin, E. M. (1994) Renal cortical interstitium and fluid absorption by peritubular capillaries. Am. J. Physiol 266, F175–F184

    PubMed  CAS  Google Scholar 

  • Berry, C. A. and Verkman, A. S. (1988) Osmotic gradient dependence of osmotic water permeability in rabbit proximal convoluted tubule. J. Membr. Biol. 105, 33–43

    Article  PubMed  CAS  Google Scholar 

  • Dantzler W. H., Wright, S. H. and Lote, C. J. (1997) Organic solute transport. In Jamison, R. L. and Wilkinson, R. (eds), Nephrology, Chapman and Hall, London, pp. 61–70

    Google Scholar 

  • Kaplan M. R., Gamba, G. and Hebert, S. C. (1996) Molecular mechanisms of NaCl transport. Annu. Rev. Physiol. 58, 649–668

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi S., Shigekawa, M. and Pouyssegur, J. (1997) Molecular physiology of vertebrate Na+ / H+ exchangers. Physiol. Reviews 77, 51–74

    CAS  Google Scholar 

  • Wang T., Egbert A. L., Abbiati T., Aronson, P. S. and Giebisch, G. (1996) Mechanisms of stimulation of proximal tubule chloride transport by formate and oxalate. Am. J. Physiol. 271, F446–F450

    PubMed  CAS  Google Scholar 

  • Zelikovic, I. and Chesney, R. W. (1989) Sodium-coupled amino acid transport in renal tubule. Kidney Int. 36, 351–359

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lote, C. (2000). The proximal tubule. In: Principles of Renal Physiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4086-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4086-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6178-7

  • Online ISBN: 978-94-011-4086-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics