Advertisement

Role of FDG SPECT in viability assessment

Chapter
  • 51 Downloads
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 226)

Abstract

Left ventricular ejection fraction (LVEF) is a major determinant of survival in patients with coronary artery disease [1]. Prognosis is particularly poor in patients with chronic coronary artery disease and severely depressed LV function (LVEF <35%) [2]. Revascularization may improve LV function in these patients when viable myocardium is present [3]. Conversely, systolic LV function does not improve in the absence of viable myocardium. Since revascularization procedures are associated with a relatively high (peri)operative morbidity and mortality in this category of patients [4], a careful selection of patients with viable myocardium is mandatory.

Keywords

Positron Emission Tomography Single Photon Emission Compute Tomographic Left Ventricular Ejection Fraction Viable Myocardium Contractile Reserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harris PJ, Harrell FE Jr, Lee KL, Behar VS, Rosati RA. Survival in medically treated coronary artery disease. Circulation 1979;60:1259–1269.PubMedCrossRefGoogle Scholar
  2. 2.
    Abraham WT, Bristow MR. Specialized centers for heart failure management. Circulation 1997;96:2755–2757.PubMedCrossRefGoogle Scholar
  3. 3.
    Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N Engl J Med 1998;339:173–181.PubMedCrossRefGoogle Scholar
  4. 4.
    Mickleborough LL, Maruyama H, Takagi Y, Mohamed S, Sun Z, Ebisuzaki L. Results of revascularization in patients with severe left ventricular dysfunction. Circulation 1995;92(9 suppl):II739.Google Scholar
  5. 5.
    Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation 1993;87:1–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Cornel JH, Bax JJ, Fioretti PM. Assessment of myocardial viability by dobutamine stress echocardiography. Curr Opin Cardiol 1996;11:621–626.PubMedCrossRefGoogle Scholar
  7. 7.
    Van der Wall EE, Vliegen HW, De Roos A, Bruschke AVG. Magnetic resonance imaging in coronary artery disease. Circulation 1995;92:2723–2739.PubMedCrossRefGoogle Scholar
  8. 8.
    Schelbert HR. Metabolic imaging to assess myocardial viability. J Nucl Med 1994;35(4 Suppl):8S–14S.PubMedGoogle Scholar
  9. 9.
    Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 1997;30:1451–1460.PubMedCrossRefGoogle Scholar
  10. 10.
    Bax JJ, Visser FC, van Lingen A et al. Feasibility of assessing regional myocardial uptake of 18F-fluorodeoxyglucose using single photon emission computed tomography. Eur Heart J 1993;14:1675–1682.PubMedCrossRefGoogle Scholar
  11. 11.
    Bax JJ, Visser FC, Blanksma PK et al. Comparison of myocardial uptake of fluorine-18-fluorodeoxyglucose imaged with PET and SPECT in dyssynergic myocardium. J Nucl Med 1996;37:1631–1636.PubMedGoogle Scholar
  12. 12.
    Sandler MP, Videlefsky S, Delbeke D et al. Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous-acquisition single-photon emission computed tomography. J Am Coll Cardiol 1995;26:870–878.PubMedCrossRefGoogle Scholar
  13. 13.
    Burt RW, Perkins OW, Oppenheim BE et al. Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET and rest thallium-201 SPECT for the detection of myocardial viability. J Nucl Med 1995;36:176–179.PubMedGoogle Scholar
  14. 14.
    Chen EQ, Maclntyre WJ, Go RT et al. Myocardial viability studies using fluorine-18-FDG SPECT: a comparison with fluorine-18-FDG PET. J Nucl Med 1997;38:582–586.PubMedGoogle Scholar
  15. 15.
    Srinivasan G, Kitsiou AN, Bacharach SL, Bartlett ML, Miller-Davis C, Dilsizian V. [18F]fluorodeoxyglucose single photon emission computed tomography: can it replace PET and thallium SPECT for the assessment of myocardial viability? Circulation 1998;97:843–850.PubMedCrossRefGoogle Scholar
  16. 16.
    Gerber BL, Melin JA, Bol A et al. Nitrogen-13-ammonia and oxygen-15-water estimates of absolute myocardial perfusion in left ventricular ischemic dysfunction. J Nucl Med 1998;39:1655–1662.PubMedGoogle Scholar
  17. 17.
    Bax JJ, Visser FC, van Lingen A et al. Relation between myocardial uptake of thallium-201 chloride and fluorine-18-fluorodeoxyglucose imaged with single photon emission computed tomography in normal individuals. Eur J Nucl Med 1995;22:56–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Rambaldi R, Poldermans D, Bax JJ, Fioretti PM, Krenning EP, Valkema R. Assessment of myocardial viability by dobutamine stress echo and simultaneous Tc99m-tetrofosmin/18-fluorodeoxyglucose SPECT [abstract]. J Nucl Cardiol 1997;4(suppl):S110.CrossRefGoogle Scholar
  19. 19.
    Knuuti MJ, Nuutila P, Ruotsalainen U et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–1262.PubMedGoogle Scholar
  20. 20.
    Vanoverschelde JLJ, Wijns W, Depré C et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993;87:1513–1523.PubMedCrossRefGoogle Scholar
  21. 21.
    Marinho NVS, Keogh BE, Costa DC, Lammertsma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996;93:737–744.PubMedCrossRefGoogle Scholar
  22. 22.
    Vom Dahl J, Altehoefer C, Sheehan FH et al. Recovery of regional left ventricular dysfunction after coronary revascularization. Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol 1996;28:948–958.CrossRefGoogle Scholar
  23. 23.
    Bax JJ, Cornel JH, Visser FC. Optimal viability criteria to predict functional recovery after revascularization [abstract]. Circulation 1997;96(Suppl I):I-194.Google Scholar
  24. 24.
    Martin WH, Delbeke D, Patton JA et al. FDG-SPECT: correlation with FDG-PET. J Nucl Med 1995;36:988–995.PubMedGoogle Scholar
  25. 25.
    Beller GA. Pharmacologic stress imaging. JAMA 1991;265:633–638.PubMedCrossRefGoogle Scholar
  26. 26.
    Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution 201-Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary artery bypass surgery in patients with severely depressed left ventricular function. Circulation 1993;87:1630–1641.PubMedCrossRefGoogle Scholar
  27. 27.
    Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–146.PubMedCrossRefGoogle Scholar
  28. 28.
    Bax JJ, Cornel JH, Visser FC et al. Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18-fluorodeoxyglucose/thallium-201 SPECT, stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 1996;28:558–565.PubMedCrossRefGoogle Scholar
  29. 29.
    Bax JJ, Cornel JH, Visser FC et al. Comparison of fluorine-18-FDG with rest-redistribution thallium-201 SPECT to delineate viable myocardium and predict functional recovery after revascularization. J Nucl Med 1998;39:1481–1486.PubMedGoogle Scholar
  30. 30.
    Kitsiou AN, Srinivasan G, Quyyumi AA, Summers RM, Bacharach SL, Dilsizian V. Stress-induced reversible and mild-to-moderate irreversible defects: are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation 1998;98:501–508.PubMedCrossRefGoogle Scholar
  31. 31.
    Cornel JH, Bax JJ, Fioretti PM et al. Prediction of improvement of ventricular function after revascularization. 18F-fluorodeoxyglucose single photon emission computed tomography vs low-dose dobutamine echocardiography. Eur Heart J 1997;18:941–948.PubMedCrossRefGoogle Scholar
  32. 32.
    Baer FM, Voth E, Deutsch HJ, Schneider CA, Schicha H, Sechtem U. Assessment of viable myocardium by dobutamine transesophageal echocardiography and comparison with fluorine-18 fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 1994;24:343–353.PubMedCrossRefGoogle Scholar
  33. 33.
    Baer FM, Voth E, Deutsch HJ et al. Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. J Am Coll Cardiol 1996;28:60–69.PubMedCrossRefGoogle Scholar
  34. 34.
    Sun KT, Czernin J, Krivokapich J et al. Effects of dobutamine stimulation on myocardial blood flow, glucose metabolism, and wall motion in normal and dysfunctional myocardium. Circulation 1996;94:3146–3154.PubMedCrossRefGoogle Scholar
  35. 35.
    Sawada S, Eisner G, Segar DS et al. Evaluation of patterns of perfusion and metabolism in dobutamine-responsive myocardium. J Am Coll Cardiol 1997;29:55–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Melon PG, De Landsheere CM, Degueldre C, Peters JL, Kulbertus HE, Pierard LA. Relation between contractile reserve and positron emission tomographic patterns of perfusion and glucose utilization in chronic ischemic left ventricular dysfunction: implications for identification of myocardial viability. J Am Coll Cardiol 1997;30:1651–1659.PubMedCrossRefGoogle Scholar
  37. 37.
    Cornel JH, Bax JJ, Elhendy A et al. Agreement and disagreement between “metabolic viability” and “contractile reserve” in akinetic myocardium. J Nucl Cardiol 1999;6:383–388.PubMedCrossRefGoogle Scholar
  38. 38.
    Pagano D, Bonser RS, Townend JN, Parums D, Camici PG. Histopathological correlates of dobutamine echocardiography in hibernating myocardium [abstract]. Circulation 1996;94(8 Suppl):I543.Google Scholar
  39. 39.
    Bax JJ, Cornel JH, Visser FC et al. Prediction of improvement of contractile function in patients with ischemic ventricular dysfunction after revascularization by fluorine-18-fluorodeoxyglucose SPECT. J Am Coll Cardiol 1997;30:377–384.PubMedCrossRefGoogle Scholar
  40. 40.
    Bax JJ, Cornel JH, Visser FC, Fioretti PM, Van Lingen A, Visser CA. Viability versus improvement of heart failure symptoms [abstract]. J Nucl Med 1998;39:18P.Google Scholar
  41. 41.
    Marwick TH, Nemec JJ, Lafont A, Salcedo EE, MacIntyre WJ. Prediction by postexercise fluoro-18 deoxyglucose positron emission tomography of improvement in exercise capacity after revascularization. Am J Cardiol 1992;69:854–859.PubMedCrossRefGoogle Scholar
  42. 42.
    Eitzman D, Al-Aouar ZR, Kanter HL et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–565.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee KS, Marwick TH, Cook SA et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994;90:2687–2694.PubMedCrossRefGoogle Scholar
  44. 44.
    Di Carli M, Davidson M, Little R et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527–533.PubMedCrossRefGoogle Scholar
  45. 45.
    Vom Dahl J, Altehoefer C, Sheehan FH et al. Effect of myocardial viability assessed by technetium-99m-sestamibi SPECT and fluorine-18-FDG PET on clinical outcome in coronary artery disease. J Nucl Med 1997;38:742–748.Google Scholar
  46. 46.
    Ziegler SI, Enterrotacher A, Boning G et al. Performance characteristics of s dual head coincidence camera for the detection of small lesions [abstract]. J Nucl Med 1997;38(Suppl):206P.Google Scholar
  47. 47.
    Bax JJ, Veening MA, Visser FC et al. Optimal metabolic conditions during FDG imaging: a comparative study using different protocols. Eur J Nucl Med 1997;24:35–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Knuuti MJ, Yki-Järvinen H, Voipio-Pulkki LM et al. Enhancement of myocardial [fluorine-18] fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med 1994;35:989–998.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

There are no affiliations available

Personalised recommendations