Skip to main content

Role of FDG SPECT in viability assessment

  • Chapter
Myocardial Viability

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 226))

  • 58 Accesses

Abstract

Left ventricular ejection fraction (LVEF) is a major determinant of survival in patients with coronary artery disease [1]. Prognosis is particularly poor in patients with chronic coronary artery disease and severely depressed LV function (LVEF <35%) [2]. Revascularization may improve LV function in these patients when viable myocardium is present [3]. Conversely, systolic LV function does not improve in the absence of viable myocardium. Since revascularization procedures are associated with a relatively high (peri)operative morbidity and mortality in this category of patients [4], a careful selection of patients with viable myocardium is mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris PJ, Harrell FE Jr, Lee KL, Behar VS, Rosati RA. Survival in medically treated coronary artery disease. Circulation 1979;60:1259–1269.

    Article  PubMed  CAS  Google Scholar 

  2. Abraham WT, Bristow MR. Specialized centers for heart failure management. Circulation 1997;96:2755–2757.

    Article  PubMed  CAS  Google Scholar 

  3. Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N Engl J Med 1998;339:173–181.

    Article  PubMed  CAS  Google Scholar 

  4. Mickleborough LL, Maruyama H, Takagi Y, Mohamed S, Sun Z, Ebisuzaki L. Results of revascularization in patients with severe left ventricular dysfunction. Circulation 1995;92(9 suppl):II739.

    Google Scholar 

  5. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation 1993;87:1–20.

    Article  PubMed  CAS  Google Scholar 

  6. Cornel JH, Bax JJ, Fioretti PM. Assessment of myocardial viability by dobutamine stress echocardiography. Curr Opin Cardiol 1996;11:621–626.

    Article  PubMed  CAS  Google Scholar 

  7. Van der Wall EE, Vliegen HW, De Roos A, Bruschke AVG. Magnetic resonance imaging in coronary artery disease. Circulation 1995;92:2723–2739.

    Article  PubMed  Google Scholar 

  8. Schelbert HR. Metabolic imaging to assess myocardial viability. J Nucl Med 1994;35(4 Suppl):8S–14S.

    PubMed  CAS  Google Scholar 

  9. Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 1997;30:1451–1460.

    Article  PubMed  CAS  Google Scholar 

  10. Bax JJ, Visser FC, van Lingen A et al. Feasibility of assessing regional myocardial uptake of 18F-fluorodeoxyglucose using single photon emission computed tomography. Eur Heart J 1993;14:1675–1682.

    Article  PubMed  CAS  Google Scholar 

  11. Bax JJ, Visser FC, Blanksma PK et al. Comparison of myocardial uptake of fluorine-18-fluorodeoxyglucose imaged with PET and SPECT in dyssynergic myocardium. J Nucl Med 1996;37:1631–1636.

    PubMed  CAS  Google Scholar 

  12. Sandler MP, Videlefsky S, Delbeke D et al. Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous-acquisition single-photon emission computed tomography. J Am Coll Cardiol 1995;26:870–878.

    Article  PubMed  CAS  Google Scholar 

  13. Burt RW, Perkins OW, Oppenheim BE et al. Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET and rest thallium-201 SPECT for the detection of myocardial viability. J Nucl Med 1995;36:176–179.

    PubMed  CAS  Google Scholar 

  14. Chen EQ, Maclntyre WJ, Go RT et al. Myocardial viability studies using fluorine-18-FDG SPECT: a comparison with fluorine-18-FDG PET. J Nucl Med 1997;38:582–586.

    PubMed  CAS  Google Scholar 

  15. Srinivasan G, Kitsiou AN, Bacharach SL, Bartlett ML, Miller-Davis C, Dilsizian V. [18F]fluorodeoxyglucose single photon emission computed tomography: can it replace PET and thallium SPECT for the assessment of myocardial viability? Circulation 1998;97:843–850.

    Article  PubMed  CAS  Google Scholar 

  16. Gerber BL, Melin JA, Bol A et al. Nitrogen-13-ammonia and oxygen-15-water estimates of absolute myocardial perfusion in left ventricular ischemic dysfunction. J Nucl Med 1998;39:1655–1662.

    PubMed  CAS  Google Scholar 

  17. Bax JJ, Visser FC, van Lingen A et al. Relation between myocardial uptake of thallium-201 chloride and fluorine-18-fluorodeoxyglucose imaged with single photon emission computed tomography in normal individuals. Eur J Nucl Med 1995;22:56–60.

    Article  PubMed  CAS  Google Scholar 

  18. Rambaldi R, Poldermans D, Bax JJ, Fioretti PM, Krenning EP, Valkema R. Assessment of myocardial viability by dobutamine stress echo and simultaneous Tc99m-tetrofosmin/18-fluorodeoxyglucose SPECT [abstract]. J Nucl Cardiol 1997;4(suppl):S110.

    Article  Google Scholar 

  19. Knuuti MJ, Nuutila P, Ruotsalainen U et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–1262.

    PubMed  CAS  Google Scholar 

  20. Vanoverschelde JLJ, Wijns W, Depré C et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993;87:1513–1523.

    Article  PubMed  CAS  Google Scholar 

  21. Marinho NVS, Keogh BE, Costa DC, Lammertsma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996;93:737–744.

    Article  PubMed  CAS  Google Scholar 

  22. Vom Dahl J, Altehoefer C, Sheehan FH et al. Recovery of regional left ventricular dysfunction after coronary revascularization. Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol 1996;28:948–958.

    Article  Google Scholar 

  23. Bax JJ, Cornel JH, Visser FC. Optimal viability criteria to predict functional recovery after revascularization [abstract]. Circulation 1997;96(Suppl I):I-194.

    Google Scholar 

  24. Martin WH, Delbeke D, Patton JA et al. FDG-SPECT: correlation with FDG-PET. J Nucl Med 1995;36:988–995.

    PubMed  CAS  Google Scholar 

  25. Beller GA. Pharmacologic stress imaging. JAMA 1991;265:633–638.

    Article  PubMed  CAS  Google Scholar 

  26. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution 201-Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary artery bypass surgery in patients with severely depressed left ventricular function. Circulation 1993;87:1630–1641.

    Article  PubMed  CAS  Google Scholar 

  27. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–146.

    Article  PubMed  CAS  Google Scholar 

  28. Bax JJ, Cornel JH, Visser FC et al. Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18-fluorodeoxyglucose/thallium-201 SPECT, stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 1996;28:558–565.

    Article  PubMed  CAS  Google Scholar 

  29. Bax JJ, Cornel JH, Visser FC et al. Comparison of fluorine-18-FDG with rest-redistribution thallium-201 SPECT to delineate viable myocardium and predict functional recovery after revascularization. J Nucl Med 1998;39:1481–1486.

    PubMed  CAS  Google Scholar 

  30. Kitsiou AN, Srinivasan G, Quyyumi AA, Summers RM, Bacharach SL, Dilsizian V. Stress-induced reversible and mild-to-moderate irreversible defects: are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation 1998;98:501–508.

    Article  PubMed  CAS  Google Scholar 

  31. Cornel JH, Bax JJ, Fioretti PM et al. Prediction of improvement of ventricular function after revascularization. 18F-fluorodeoxyglucose single photon emission computed tomography vs low-dose dobutamine echocardiography. Eur Heart J 1997;18:941–948.

    Article  PubMed  CAS  Google Scholar 

  32. Baer FM, Voth E, Deutsch HJ, Schneider CA, Schicha H, Sechtem U. Assessment of viable myocardium by dobutamine transesophageal echocardiography and comparison with fluorine-18 fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 1994;24:343–353.

    Article  PubMed  CAS  Google Scholar 

  33. Baer FM, Voth E, Deutsch HJ et al. Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. J Am Coll Cardiol 1996;28:60–69.

    Article  PubMed  CAS  Google Scholar 

  34. Sun KT, Czernin J, Krivokapich J et al. Effects of dobutamine stimulation on myocardial blood flow, glucose metabolism, and wall motion in normal and dysfunctional myocardium. Circulation 1996;94:3146–3154.

    Article  PubMed  CAS  Google Scholar 

  35. Sawada S, Eisner G, Segar DS et al. Evaluation of patterns of perfusion and metabolism in dobutamine-responsive myocardium. J Am Coll Cardiol 1997;29:55–61.

    Article  PubMed  CAS  Google Scholar 

  36. Melon PG, De Landsheere CM, Degueldre C, Peters JL, Kulbertus HE, Pierard LA. Relation between contractile reserve and positron emission tomographic patterns of perfusion and glucose utilization in chronic ischemic left ventricular dysfunction: implications for identification of myocardial viability. J Am Coll Cardiol 1997;30:1651–1659.

    Article  PubMed  CAS  Google Scholar 

  37. Cornel JH, Bax JJ, Elhendy A et al. Agreement and disagreement between “metabolic viability” and “contractile reserve” in akinetic myocardium. J Nucl Cardiol 1999;6:383–388.

    Article  PubMed  CAS  Google Scholar 

  38. Pagano D, Bonser RS, Townend JN, Parums D, Camici PG. Histopathological correlates of dobutamine echocardiography in hibernating myocardium [abstract]. Circulation 1996;94(8 Suppl):I543.

    Google Scholar 

  39. Bax JJ, Cornel JH, Visser FC et al. Prediction of improvement of contractile function in patients with ischemic ventricular dysfunction after revascularization by fluorine-18-fluorodeoxyglucose SPECT. J Am Coll Cardiol 1997;30:377–384.

    Article  PubMed  CAS  Google Scholar 

  40. Bax JJ, Cornel JH, Visser FC, Fioretti PM, Van Lingen A, Visser CA. Viability versus improvement of heart failure symptoms [abstract]. J Nucl Med 1998;39:18P.

    Google Scholar 

  41. Marwick TH, Nemec JJ, Lafont A, Salcedo EE, MacIntyre WJ. Prediction by postexercise fluoro-18 deoxyglucose positron emission tomography of improvement in exercise capacity after revascularization. Am J Cardiol 1992;69:854–859.

    Article  PubMed  CAS  Google Scholar 

  42. Eitzman D, Al-Aouar ZR, Kanter HL et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–565.

    Article  PubMed  CAS  Google Scholar 

  43. Lee KS, Marwick TH, Cook SA et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994;90:2687–2694.

    Article  PubMed  CAS  Google Scholar 

  44. Di Carli M, Davidson M, Little R et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527–533.

    Article  PubMed  Google Scholar 

  45. Vom Dahl J, Altehoefer C, Sheehan FH et al. Effect of myocardial viability assessed by technetium-99m-sestamibi SPECT and fluorine-18-FDG PET on clinical outcome in coronary artery disease. J Nucl Med 1997;38:742–748.

    Google Scholar 

  46. Ziegler SI, Enterrotacher A, Boning G et al. Performance characteristics of s dual head coincidence camera for the detection of small lesions [abstract]. J Nucl Med 1997;38(Suppl):206P.

    Google Scholar 

  47. Bax JJ, Veening MA, Visser FC et al. Optimal metabolic conditions during FDG imaging: a comparative study using different protocols. Eur J Nucl Med 1997;24:35–41.

    Article  PubMed  CAS  Google Scholar 

  48. Knuuti MJ, Yki-Järvinen H, Voipio-Pulkki LM et al. Enhancement of myocardial [fluorine-18] fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med 1994;35:989–998.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bax, J.J., Visser, F.C., Van Der Wall, E.E. (2000). Role of FDG SPECT in viability assessment. In: Iskandrian, A.E., Van Der Wall, E.E. (eds) Myocardial Viability. Developments in Cardiovascular Medicine, vol 226. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4080-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4080-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5793-6

  • Online ISBN: 978-94-011-4080-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics