Skip to main content

Assessment of myocardial viability with positron emission tomography

  • Chapter
Myocardial Viability

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 226))

Abstract

The assessment of myocardial viability in patients with chronic coronary artery disease but well preserved left ventricular performance is of interest but often remains without significant impact on therapy. More often than not do investigations on myocardial viability in such patients appear to explore a paradigm and to test and validate a particular diagnostic approach. The lack of clinical outcome data on viability assessment in patients with normal or near normal left ventricular function and the absence of compelling arguments for why viability should be determined in such patients appear in support of this contention. However, the search for myocardial viability appears critical and often pivotal in the management of patients with end-stage coronary artery disease and severe depression of cardiac function. In fact, several investigations confirm the often considerable impact myocardial viability studies have on the management of such patients [1–5]. Viability assessments aid in predicting cardiac morbidity and mortality as well as in identifying those patients who are likely to benefit most from surgical revascularization. Demonstration of viable myocardium in ischemic cardiomyopathic can therefore substantially contribute to the pre-surgical assessment of the risk to benefit ratio. Viability studies have therefore become in many institutions an integral part of the diagnostic work-up of heart failure patients with ischemic cardiomyopathy [6,7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Di Carli MF, Davidson M, Little R et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527–533.

    Article  PubMed  Google Scholar 

  2. Dreyfus GD, Duboc D, Blasco A et al. Myocardial viability assessment in ischemic cardiomyopathy: benefits of coronary revascularization. Ann Thorac Surg 1994;57:1402–1408.

    Article  PubMed  CAS  Google Scholar 

  3. Eitzman D, Al-Aouar Z, Kanter HL et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–565.

    Article  PubMed  CAS  Google Scholar 

  4. Haas F, Haehnel CJ, Picker W et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 1997;30:1693–1700.

    Article  PubMed  CAS  Google Scholar 

  5. Beanlands RS, deKemp RA, Smith S, Johansen H, Ruddy TD. F-18-fluorodeoxyglucose PET imaging alters clinical decision making in patients with impaired ventricular function. Am J Cardiol 1997;79:1092–1095.

    Article  PubMed  CAS  Google Scholar 

  6. Louie HW, Laks H, Milgalter E et al. Ischemic cardiomyopathy: criteria for coronary revascularization and cardiac transplantation. Circulation 1991;84(5 Suppl):III-290–295.

    Google Scholar 

  7. Blitz A, Laks H. The role of coronary revascularization in the management of heart failure: identification of candidates and review of results. Curr Opin Cardiol 1996;11:276–290.

    Article  PubMed  CAS  Google Scholar 

  8. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1987;72:V123–135.

    Google Scholar 

  9. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: Evidence for “hibernating myocardium”. J Am Coll Cardiol 1986;8:1467–1470.

    Article  PubMed  CAS  Google Scholar 

  10. Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF. Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol 1978;234:H653–659.

    PubMed  CAS  Google Scholar 

  11. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–1149.

    Article  PubMed  CAS  Google Scholar 

  12. Gewirtz H, Fischman AJ, Abraham S, Gilson M, Strauss HW, Alpert N. Positron emission tomographic measurements of absolute regional myocardial blood flow permits identification of nonviable myocardium in patients with chronic myocardial infarction. J Am Coll Cardiol 1994;23:851–859.

    Article  PubMed  CAS  Google Scholar 

  13. Ng C, Huang SC, Schelbert H, Buxton D. Validation of a model for [1-11C] acetate as a tracer of cardiac oxidative metabolism. Am J Physiol 1994;266:H1304–1315.

    PubMed  CAS  Google Scholar 

  14. Brown M, Marshall DR, Burton BS, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687–696.

    Article  PubMed  CAS  Google Scholar 

  15. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 1988;63:628–634.

    Article  PubMed  CAS  Google Scholar 

  16. Buxton DB, Nienaber CA, Luxen A et al. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1-11C] acetate and dynamic positron emission tomography. Circulation 1989;79:134–142.

    Article  PubMed  CAS  Google Scholar 

  17. Henes CG, Bergmann SR, Walsh MN, Geltman E. Recovery of myocardial perfusion and oxygen consumption after htombolysis delineated with positron emission tomography (PET) [abstract]. Circulation 1989;80(4 Suppl):II312.

    Google Scholar 

  18. Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1-11C] acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, post-ischemic and hyperemic canine myocardium. Circulation 1991;81:1594–1605.

    Article  Google Scholar 

  19. Gropler RJ, Siegel BA, Sampathkumaran K et al. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 1992;19:989–997.

    Article  PubMed  CAS  Google Scholar 

  20. Gropler RJ, Geltman EM, Sampathkumaran K et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol 1992;20:569–577.

    Article  PubMed  CAS  Google Scholar 

  21. Feigl EO, Neat GW, Huang AH. Interrelations between coronary artery pressure, myocardial metabolism and coronary blood flow. J Mol Cell Cardiol 1990;22:375–390.

    Article  PubMed  CAS  Google Scholar 

  22. Czernin J, Porenta G, Brunken R et al. Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction. Circulation 1993;88:884–895.

    Article  PubMed  CAS  Google Scholar 

  23. Wolpers HG, Burchert W, van den Hoff J, Weinhardt R, Meyer GJ, Lichtlen PR. Assessment of myocardial viability by use of 11C-acetate and positron emission tomography. Circulation 1997;95:1417–1424.

    Article  PubMed  CAS  Google Scholar 

  24. Hata T, Nohara R, Fujita M et al. Noninvasive assessment of myocardial viability by positron emission tomography with 11C acetate in patients with old myocardial infarction. Usefulness of low-dose dobutamine infusion. Circulation 1996;94:1834–1841.

    Article  PubMed  CAS  Google Scholar 

  25. Hicks RJ, Melon P, Kalff V et al. Metabolic imaging by positron emission tomography early after myocardial infarction as a predictor of recovery of myocardial function after reperfusion. J Nucl Cardiol 1994;1:124–137.

    Article  PubMed  CAS  Google Scholar 

  26. Phelps ME, Hoffman EJ, Selin CE et al. Investigation of [18F] 2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med 1978;19:1311–1319.

    PubMed  CAS  Google Scholar 

  27. Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 1982;23:577–586.

    PubMed  CAS  Google Scholar 

  28. Krivokapich J, Huang SC, Phelps ME et al. Estimation of rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose. Am J Physiol 1982;243:H884–895.

    PubMed  CAS  Google Scholar 

  29. Schelbert HR, Phelps ME, Selin C, Marshall RC, Hoffman EJ, Kuhl DE. Regional myocardial ischemia assessed by 18Fluoro-2-deoxyglucose and positron emission computed tomography. In: Kreuzer H, Parmley WW, Rentrop P, Heiss HW, editors. Quantification of myocardial ischemia. New York: Gehard Witzstrock Publishing House; 1980. p. 437–447.

    Google Scholar 

  30. Marshall RC, Tillisch JH, Phelps ME et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 1983;67:766–778.

    Article  PubMed  CAS  Google Scholar 

  31. Tillisch J, Brunken R, Marshall R et al. Reversibility of cardiac wall motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–888.

    Article  PubMed  CAS  Google Scholar 

  32. Vanoverscheide JL, Wijns W, Depré C et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993;87:1513–1523.

    Article  Google Scholar 

  33. Rahimtoola SH. Hibernating myocardium has reduced blood flow at rest that increases with low-dose dobutamine. Circulation 1996;94:3055–3061.

    Article  PubMed  CAS  Google Scholar 

  34. Marinho NV, Keogh BE, Costa DC, Lammerstma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996;93:737–744.

    Article  PubMed  CAS  Google Scholar 

  35. Gerber BL, Melin JA, Bol A, Labar D, Cogneau M, Michel C, Vanoverschelde JJ. Nitrogen-13-ammonia and oxygen-15-water estimates of absolute myocardial perfusion in left ventricular ischemic dysfunction. J Nucl Med 1998;39:1655–1662.

    PubMed  CAS  Google Scholar 

  36. Sun KT, Czernin J, Krivokapich J et al. Effects of dobutamine stimulation on myocardial blood flow, glucose metabolism and wall motion in normal and dysfunctional myocardium. Circulation 1996;94:3146–3154.

    Article  PubMed  CAS  Google Scholar 

  37. Depré C, Vanoverschelde JLJ, Melin JA et al. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 1995;268:H1265–H1275.

    PubMed  Google Scholar 

  38. Grandin C, Wijns W, Melin JA et al. Delineation of myocardial viability with PET. J Nucl Med 1995;36:1543–1552.

    PubMed  CAS  Google Scholar 

  39. Shivalkar B, Maes A, Borgers M et al. Only hibernating myocardium invariably shows early recovery after coronary revascularization. Circulation 1996;94:308–315.

    Article  PubMed  CAS  Google Scholar 

  40. Elsässer A, Schlepper M, Klövekorn WP et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 1997;96:2920–2931.

    Article  PubMed  Google Scholar 

  41. Iida H, Rhodes CG, de Silva R et al. Myocardial tissue fraction — correction for partial volume effects and measure of tissue viability. J Nucl Med 1991;32:2169–2175.

    PubMed  CAS  Google Scholar 

  42. Yamamoto Y, De Silva R, Rhodes CG et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation 1992;86:167–178.

    Article  PubMed  CAS  Google Scholar 

  43. de Silva R, Yamamoto Y, Rhodes CG et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation 1992;86:1738–1742.

    Article  PubMed  Google Scholar 

  44. Tamaki N, Yonekura Y, Yamashita K et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989;64:860–865.

    Article  PubMed  CAS  Google Scholar 

  45. Tamaki N, Ohtani H, Yamashita K et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxygrucose. J Nucl Med 1991;32:673–678.

    PubMed  CAS  Google Scholar 

  46. Marwick TH, MacIntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function, and metabolism. Circulation 1992;85:1347–1353.

    Article  PubMed  CAS  Google Scholar 

  47. Lucignani G, Paolini G, Landoni C et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992;19:874–881.

    Article  PubMed  CAS  Google Scholar 

  48. Carrel T, Jenni R, Haubold-Reuter S, Von Schulthess G, Pasic M, Turina M. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg 1992;6:479–484.

    Article  PubMed  CAS  Google Scholar 

  49. Gropler RJ, Geltman EM, Sampathkumaran K et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;22:1587–1597.

    Article  PubMed  CAS  Google Scholar 

  50. Knuuti M, Saraste M, Nuutila P et al. Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J 1994;127:785–796.

    Article  PubMed  CAS  Google Scholar 

  51. vom Dahl J, Eitzman DT, Al-Aouar ZR et al. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation 1994;90:2356–2366.

    Article  Google Scholar 

  52. Tamaki N, Kawamoto M, Tadamura E et al. Prediction of reversible ischemia after revascularization. Perfusion and metabolic studies using positron emission tomography. Circulation 1995;91:1697–1705.

    Article  PubMed  CAS  Google Scholar 

  53. Maes A, Flameng W, Nuyts J et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 1994;90:735–745.

    Article  PubMed  CAS  Google Scholar 

  54. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1991;83:26–37.

    Article  PubMed  CAS  Google Scholar 

  55. Fath-Ordoubadi F, Pagano D, Marinho NV, Keogh BE, Bonser RS, Camici PG. Coronary revascularization in the treatment of moderate and severe postischemic left ventricular dysfunction. Am J Cardiol 1998;82:26–31.

    Article  PubMed  CAS  Google Scholar 

  56. Choi Y, Brunken RC, Hawkins RA et al. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 1993;20:308–318.

    Article  PubMed  CAS  Google Scholar 

  57. Chan A, Czernin J, Brunken R, Choi Y, Krivokapich J, Schelbert HR. Effects of fasting on the incidence of blood flow metabolism mismatches in chronic CAD patients [abstract]. J Am Coll Cardiol 1993;21(2 Suppl A):129A.

    Google Scholar 

  58. Maki M, Luotolahti M, Nuutila P et al. Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation 1996;93:1658–1666.

    Article  PubMed  CAS  Google Scholar 

  59. Berry JJ, Baker JA, Pieper KS, Hanson MW, Hoffman JM, Coleman RE. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers. J Nucl Med 1991;32:1518–1525.

    PubMed  CAS  Google Scholar 

  60. Schöder H, Campisi R, Ohtake T et al. Predictive accuracy of PET flow/F-18 FDG mismatch is maintained in type II diabetes mellitus patients [abstract]. J Nucl Med 1997;38(5 Suppl):55P.

    Google Scholar 

  61. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979;237:E214–223.

    PubMed  CAS  Google Scholar 

  62. Knuuti MJ, Nuutila P, Ruotsalainen U et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–1262.

    PubMed  CAS  Google Scholar 

  63. Ohtake T, Yokoyama I, Watanabe T et al. Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med 1995;36:456–463.

    PubMed  CAS  Google Scholar 

  64. Nienaber CA, Brunken RC, Sherman CT et al. Metabolic and functional recovery of ischemic human myocardium after coronary angioplasty. J Am Coll Cardiol 1991;18:966–978.

    Article  PubMed  CAS  Google Scholar 

  65. Haas F, Haehnel N, Augustin N et al. Prevalence and time-course of functional improvements in stunned and hibernating myocardium in patients with coronary artery disease (CAD) and congestive heart failure (CHF) [abstract]. J Am Coll Cardiol 1997;29(2 Suppl A):376A.

    Article  Google Scholar 

  66. Vanoverschelde JL, Melin JA, Depré C, Borgers M, Dion R, Wijns W. Time-course of functional recovery of hibernating myocardium after coronary revascularization [abstract]. Circulation 1994;90(4 Suppl):I378.

    Google Scholar 

  67. Luu M, Stevenson LW, Brunken RC, Drinkwater DM, Schelbert HR, Tillisch JH. Delayed recovery of revascularized myocardium after referral for cardiac transplantation. Am Heart J 1990;119:668–670.

    Article  PubMed  CAS  Google Scholar 

  68. Flameng W, Suy R, Schwarz F et al. Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: determinants of reversible segmental asynergy post-revascularization surgery. Am Heart J 1981;102:846–857.

    Article  PubMed  CAS  Google Scholar 

  69. Borgers M, Ausma J. Structural aspects of the chronic hibernating myocardium in man. Basic Res Cardiol 1995;90:44–46.

    PubMed  CAS  Google Scholar 

  70. Ausma J, Wijffels M, Thonae F, Wouters L, Allessie M, Borgers M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 1997;96:3157–3163.

    Article  PubMed  CAS  Google Scholar 

  71. Ausma J, Wijffels M, van Eys G et al. Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am J Pathol 1997;151:985–997.

    PubMed  CAS  Google Scholar 

  72. Schwarz ER, Schaper J, vom Dahl J et al. Myocyte degeneration and cell death in hibernating human myocardium. J Am Coll Cardiol 1996;27:1577–1585.

    Article  PubMed  CAS  Google Scholar 

  73. Schwaiger M, Sun D, Deeb GM et al. Expression of myocardial glucose transporter (GLUT) mRNAs in patients with advanced coronary artery disease (CAD) [abstract]. Circulation 1994;90(4 Suppl):I113.

    Google Scholar 

  74. Young LH, Renfu Y, Russell R et al. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 1997;95:415–422.

    Article  PubMed  CAS  Google Scholar 

  75. Lopaschuk GD, Stanley WC. Glucose metabolism in the ischemic heart. Circulation 1997;95:313–315.

    Article  PubMed  CAS  Google Scholar 

  76. Narula J, Haider N, Virmani R et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335:1182–1189.

    Article  PubMed  CAS  Google Scholar 

  77. Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 1998;82:1111–1129.

    Article  PubMed  CAS  Google Scholar 

  78. Stevenson WG, Stevenson LW, Middlekauff HR et al. Improving survival for patients with advanced heart failure: A study of 737 consecutive patients. J Am Coll Cardiol 1995;26:1417–1423.

    Article  PubMed  CAS  Google Scholar 

  79. Alderman EL, Fisher LD, Litwin P et al. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation 1983;68:785–795.

    Article  PubMed  CAS  Google Scholar 

  80. Passamani E, Davis KB, Gillespie MJ, Killip T. A randomized trial of coronary artery bypass surgery. Survival of patients with low ejection fraction. N Engl J Med 1985;312:1665–1671.

    Article  PubMed  CAS  Google Scholar 

  81. Maes A, Flameng W, Borgers M et al. Regional myocardial blood flow, glucose utilization and contractile function before and after revascularization and ultrastructural findings in patients with chronic coronary artery disease. Eur J Nucl Med 1995;22:1299–1305.

    Article  PubMed  CAS  Google Scholar 

  82. Paolini G, Lucignani G, Zuccari M et al. Identification and revascularization of hibernating myocardium in angina-free patients with left ventricular dysfunction. Eur J Cardiothorac Surg 1994;8:139–144.

    Article  PubMed  CAS  Google Scholar 

  83. vom Dahl J, Altehoefer C, Büchin P et al. Einfluss von Myokardvitalitat und Koronarrevaskularisation auf klinische Entwicklung und Prognose: Eine Verlaufsbeobachtung bei 161 Patienten mit kononarer Herzkrankheid. Kardiol 1996;85:868–881.

    Google Scholar 

  84. Pagano D, Bonser RS, Townend JN, Ordoubadi F, Lorenzoni R, Camici PG. Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with postischaemic heart failure. Heart 1998;79:281–288.

    PubMed  CAS  Google Scholar 

  85. Beanlands RS, Hendry PJ, Masters RG, deKemp RA, Woodend K, Ruddy TD. Delay in revascularization is associated with increased mortality in patients with severe left ventricular dysfunction and viable myocardium on fluorine-18-fluorodeoxyglucose positron emission tomographic imaging. Circulation 1998;98(19 Suppl):II51–56.

    PubMed  CAS  Google Scholar 

  86. Pagano D, Townend JN, Littler WA, Horton R, Camici PG, Bonser RS. Coronary artery bypass surgery as treatment for ischemic heart failure: the predictive value of viability assessment with quantitative positron emission tomography for symptomatic and functional outcome. J Thorac Cardiovasc Surg 1998;115:791–799.

    Article  PubMed  CAS  Google Scholar 

  87. Yoshida K, Gould KL. Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 1993;22:984–997.

    Article  PubMed  CAS  Google Scholar 

  88. Goldman L, Hashimoto B, Cook EF, Loscalzo A. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: advantages of a new specific activity scale. Circulation 1981;64:1227–1234.

    Article  PubMed  CAS  Google Scholar 

  89. Di Carli MF, Asgarzadie F, Schelbert HR et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436–3444.

    Article  PubMed  Google Scholar 

  90. Pagley PR, Beller GA, Watson DD, Gimple LW, Ragosta M. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathic and residual myocardial viability. Circulation 1997;96:793–800.

    Article  PubMed  CAS  Google Scholar 

  91. Tamaki N, Kawamoto M, Takahashi N et al. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: Comparison with stress thallium imaging. J Am Coll Cardiol 1993;22:1621–1627.

    Article  PubMed  CAS  Google Scholar 

  92. Lee KS, Marwick TH, Cook SA et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Circulation 1994;90:2687–2694.

    Article  PubMed  CAS  Google Scholar 

  93. Duong TH, Hendi P, Fonarow G et al. Role of positron emission tomographic assessment of myocardial viability in the management of patients who are referred for cardiac transplantation [abstract]. Circulation 1995;92(8 Suppl):I123.

    Google Scholar 

  94. Auerbach MA, Yagoubi S, Gambhir S et al. The prevalence of viable myocardium in 288 patients with congestive heart failure [abstract]. J Am Coll Cardiol 1998;31(25 Suppl A):375A.

    Article  Google Scholar 

  95. Miller TR, Wallis JW, Landy BR, Gropler RJ, Sabharwal CL. Measurement of global and regional left ventricular function by cardiac PET. J Nucl Med 1994;35:999–1005.

    PubMed  CAS  Google Scholar 

  96. Boyd HL, Gunn RN, Marinho NV et al. Non-invasive measurement of left ventricular volumes and function by gated positron emission tomography. Eur J Nucl Med 1996;23:1594–1602.

    Article  PubMed  CAS  Google Scholar 

  97. Brunken RC, Kottou S, Nienaber CA et al. PET detection of viable tissue in myocardial segments with persistent defects at T1-201 SPECT. Radiology 1989;172:65–73.

    PubMed  CAS  Google Scholar 

  98. Burt RW, Perkins OW, Oppenheim BE et al. Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET and rest thallium-201 SPECT for detection of myocardial viability. J Nucl Med 1995;36:176–179.

    PubMed  CAS  Google Scholar 

  99. Sandler MP, Patton JA. Fluorine 18-labeled fluorodeoxyglucose myocardial single-photon emission computed tomography: An alternative for determining myocardial viability. J Nucl Cardiol 1996;3:342–349.

    Article  PubMed  CAS  Google Scholar 

  100. Bax JJ, Visser FC, van Lingen A et al. Feasibility of assessing regional myocardial uptake of 18F-fluorodeoxyglucose using single photon emission computed tomography. Eur Heart J 1993;14:1675–1682.

    Article  PubMed  CAS  Google Scholar 

  101. Bax JJ, Cornel JH, Visser FC et al. Prediction of recovery of myocardial dysfunction after revascularization comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 1996;28:558–564.

    Article  PubMed  CAS  Google Scholar 

  102. Sawada S, Eisner G, Segar DS et al. Evaluation of patterns of perfusion and metabolism in dobutamine-responsive myocardium. J Am Coll Cardiol 1997;29:55–61.

    Article  PubMed  CAS  Google Scholar 

  103. Matsunari I, Beoning G, Ziegler SI et al. Attenuation-corrected 99mTc-tetrofosmin single-photon emission computed tomography in the detection of viable myocardium: comparison with positron emission tomography using 18F-fluorodeoxyglucose. J Am Coll Cardiol 1998;32:927–935.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schelbert, H.R. (2000). Assessment of myocardial viability with positron emission tomography. In: Iskandrian, A.E., Van Der Wall, E.E. (eds) Myocardial Viability. Developments in Cardiovascular Medicine, vol 226. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4080-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4080-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5793-6

  • Online ISBN: 978-94-011-4080-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics