Advertisement

Role of magnetic resonance techniques in viability assessment

Chapter
  • 52 Downloads
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 226)

Abstract

With the application of magnetic resonance (MR) techniques in clinical cardiology, important tools have been added to the currently available diagnostic arsenal for the evaluation of patients with coronary artery disease. In patients with coronary artery disease it is of paramount importance to distinguish between viable myocardium and areas of myocardial fibrosis. Viable myocardial areas are most likely to benefit from revascularization, whereas revascularization of fibrotic myocardium will not lead to improvement of left ventricular function. For the prospective identification of jeopardized but viable myocardium for purposes of guiding therapeutic interventions in individual patients the following three standards for myocardial viability can be used;
  1. 1.

    preserved myocardial perfusion and perfusion reserve

     
  2. 2.

    preserved systolic wall motion and thickening

     
  3. 3.

    preserved myocardial metabolism

     

Keywords

Single Photon Emission Compute Tomography Myocardial Perfusion Myocardial Viability Contractile Reserve Myocardial Perfusion Reserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The clinical role of magnetic resonance in cardiovascular disease. Task Force of the European Society of Cardiology, in collaboration with the Association of European Paediatric Cardiologists. Eur Heart J 1998;19:19–39.CrossRefGoogle Scholar
  2. 2.
    Longmore DB, Klipstein RH, Underwood SR et al. Dimensional accuracy of magnetic resonance studies of the heart. Lancet 1985;1:1360–1362.PubMedCrossRefGoogle Scholar
  3. 3.
    Sechtem U, Pflugfelder PW, White RD et al. Cine MR imaging: potential for the evaluation of cardiovascular function. AJR Am J Roentgenol 1987;148:239–246.PubMedGoogle Scholar
  4. 4.
    Wetter DR, McKinnon GC, Debatin JF, Von Schulthess GK. Cardiac echo-planar MR imaging: comparison of single-and multiple shot techniques. Radiology 1995;194:765–770.PubMedGoogle Scholar
  5. 5.
    Rebergen SA, Van der Wall EE, Doornbos J, De Roos A. Magnetic resonance measurement of velocity and flow: technique, validation, and cardiovascular applications. Am Heart J 1993;126:1439–1456.PubMedCrossRefGoogle Scholar
  6. 6.
    Beyerbacht HP, Vliegen HW, Lamb HJ et al. Magnetic resonance spectroscopy of the human heart: current status and clinical implications. Eur Heart J 1996;17:1158–1166.PubMedCrossRefGoogle Scholar
  7. 7.
    Frahm J, Merboldt KD, Bruhn H, Gyngell ML, Hanicke W, Chien D. 0.3-second FLASH MRI of the human heart. Magn Reson Med 1990;13:150–157.PubMedCrossRefGoogle Scholar
  8. 8.
    Atkinson DJ, Burstein D, Edelman RR. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 1990;174:757–762.PubMedGoogle Scholar
  9. 9.
    Wilke N, Simm C, Zhang J et al. Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 1993;29:485–497.PubMedCrossRefGoogle Scholar
  10. 10.
    Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991;18:959–965.PubMedCrossRefGoogle Scholar
  11. 11.
    Van Rugge FP, Boreel JJ, van der Wall EE et al. Cardiac first-pass and myocardial perfusion in normal subjects assessed by sub-second Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 1991;15:959–965.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Rugge FP, van der Wall EE, van Dijkman PRM, Louwerenburg HW, de Roos A, Bruschke AVG. Usefulness of ultrafast magnetic resonance imaging in healed myocardial infarction. Am J Cardiol 1992;70:1233–1237.PubMedCrossRefGoogle Scholar
  13. 13.
    Matheijssen NAA, Louwerenburg HW, Van Rugge FP et al. Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole SestaMIBI SPECT for detection of perfusion abnormalities in patients with one-vessel cornary artery disease: assessment by quantitative model fitting. Magn Reson Med 1996;35:221–228.PubMedCrossRefGoogle Scholar
  14. 14.
    Wilke N, Jerosch-Herold M, Wang Y et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 1997;204:373–384.PubMedGoogle Scholar
  15. 15.
    Lauerma K, Virtanen KS, Sipilä LM, Hekali P, Aronen HJ. Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 1997;96:2859–2867.PubMedCrossRefGoogle Scholar
  16. 16.
    Dendale P, Franken PR, Meusel M, Van der Geest R, De Roos A. Distinction between open and occluded infarct-related arteries using contrast-enhanced magnetic resonance imaging. Am J Cardiol 1997;80:334–336.PubMedCrossRefGoogle Scholar
  17. 17.
    Van der Wall EE, Van Dijkman PRM, De Roos A et al. Diagnostic significance of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: its potential in assessing reperfusion. Br Heart J 1990;63:12–17.PubMedCrossRefGoogle Scholar
  18. 18.
    De Roos A, Van Rossum AC, Van der Wall EE et al. Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd-DTPA-enhanced MR imaging. Radiology 1989;172:717–720.PubMedGoogle Scholar
  19. 19.
    De Roos A, Matheijssen NAA, Doornbos J, Van Dijkman PRM, Van Voorthuisen AE, Van der Wall EE. Myocardial infarct size after reperfusion therapy: assessment with Gd-DTPA-enhanced MR imaging. Radiology 1990;176:517–521.PubMedGoogle Scholar
  20. 20.
    Yokota C, Nonogi H, Miyazaki S et al. Gadolinium-enhanced magnetic resonance imaging in acute myocardiol infarction. Am J Cardiol 1995;75:577–581.PubMedCrossRefGoogle Scholar
  21. 21.
    Dendale P, Franken PR, Block P, Pratikakis Y, de Roos A. Contrast enhanced and functional magnetic resonance imaging for the detection of viable myocardium after infarction. Am Heart J 1998;135:875–880.PubMedCrossRefGoogle Scholar
  22. 22.
    Wu KC, Zerhouni EA, Judd RM et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998;97:765–772.PubMedCrossRefGoogle Scholar
  23. 23.
    Penneil DJ, Underwood SR, Ell PJ, Swanton RH, Walker JM, Longmore DB. Dipyridamole magnetic resonance imaging dipyridamole: a comparison with thallium-201 emission tomography. Br Heart J 1990;64:362–369.CrossRefGoogle Scholar
  24. 24.
    Baer FM, Smolarz K, Jungehiilsing M et al. Feasibility of high-dose dipyridamole-magnetic resonance imaging for detection of coronary artery disease and comparison with coronary angiography. Am J Cardiol 1992;69:51–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Pennell DJ, Underwood SR, Manzara CC et al. Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 1992;70:34–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Baer FM, Voth E, Theissen P, Schicha H, Sechtem U. Coronary artery disease: findings with GRE MR imaging and Tc-99m methoxyisobutyl-isonitrile SPECT during simultaneous dobutamine stress. Radiology 1994;193:203–209.PubMedGoogle Scholar
  27. 27.
    Van Rugge FP, Van der Wall EE, Spanjersberg SJ et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 1994;90:127–138.PubMedCrossRefGoogle Scholar
  28. 28.
    Buller VGM, Van der Geest RJ, Kool MD, Van der Wall EE, De Roos A, Reiber JHC. Assessment of regional left ventricular wall parameters from short-axis magnetic resonance imaging using a three-dimensional-extension to the improved centerline method. Invest Radiol 1997;32:529–539.PubMedCrossRefGoogle Scholar
  29. 29.
    Holman ER, Buller VGM, De Roos A et al. Detection and quantification of dysfunctional myocardium by magnetic resonance imaging. A new three-dimensional method for quantitative wall thickening analysis. Circulation 1997;95:924–931.PubMedCrossRefGoogle Scholar
  30. 30.
    Johnston DL, Gupta VK, Wendt RE, Mahmarian JJ, Verani MS. Detection of viable myocardium in segments with fixed defects on thallium-201 scintigraphy: usefulness of magnetic resonance imaging early after acute myocardial infarction. Magn Reson Imaging 1993;11:949–956.PubMedCrossRefGoogle Scholar
  31. 31.
    Lawson MA, Johnson LL, Coghlan L et al. Correlation of thallium uptake with left ventricular wall thickness by cine magnetic resonance imaging in patients with acute and healed myocardial infarcts. Am J Cardiol 1997;80:434–441.PubMedCrossRefGoogle Scholar
  32. 32.
    Baer FM, Smolarz K, Jungehülsing FM et al. Chronic myocardial infarction: assessment of morphology, function, and perfusion by gradient echo magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile SPECT. Am Heart J 1992;123:636–645.PubMedCrossRefGoogle Scholar
  33. 33.
    Baer FM, Smolarz K, Theissen P, Voth E, Schicha H, Sechtem U. Regional 99mTc-methoxyisobutyl-isonitrile-uptake at rest in patients with myocardial infarcts: comparison with morphological and functional parameters obtained from gradient-echo magnetic resonance imaging. Eur Heart J 1994;15:97–107.PubMedCrossRefGoogle Scholar
  34. 34.
    Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [185]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 1995;91:1006–1015.PubMedCrossRefGoogle Scholar
  35. 35.
    Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Frank JA, Bonow RO. Regional left ventricular wall thickening. Relation to regional uptake of 18Fluorodeoxyglucose and 201Tl in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 1992;86:1125–1137.PubMedCrossRefGoogle Scholar
  36. 36.
    Perrone-Filardi P, Bacharach SL, Dilsizian V et al. Metabolic evidence of viable myocardium in regions with reduced wall thickness and absent wall thickening in patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 1992;20:161–168.PubMedCrossRefGoogle Scholar
  37. 37.
    Morguet AJ, Kögler A, Schmitt HA, Emrich D, Kreuzer H, Munz DL. Assessment of myocardial viability in persistent defects on thallium-201 SPECT after reinjection using gradient-echo MRI. Nuklearmedizin 1996;35:146–152.PubMedGoogle Scholar
  38. 38.
    Baer FM, Theissen P, Schneider CA et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 1998;31:1040–1048.PubMedCrossRefGoogle Scholar
  39. 39.
    Baer FM, Voth E, LaRosee K et al. Comparison of dobutamine transesophageal echocardiography and dobutamine magnetic resonance imaging for detection of residual myocardial viability. Am J Cardiol 1996;78:415–419.PubMedCrossRefGoogle Scholar
  40. 40.
    Dendale PA, Franken PR, Waldman GJ et al. Low-dosage dobutamine magnetic resonance imaging as an alternative to echocardiography in the detection of viable myocardium after acute infarction. Am Heart J 1995;130:134–140.PubMedCrossRefGoogle Scholar
  41. 41.
    Dendale P, Franken PR, Holman E, Avenarius J, Van der Wall EE, De Roos A. Validation of low-dose dobutamine magnetic resonance imaging for assessment of myocardial viability after infarction by serial imaging. Am J Cardiol 1998;82:375–377.PubMedCrossRefGoogle Scholar
  42. 42.
    Gunning MG, Anagnostopoulos C, Knight CJ et al. Comparison of 201T1, 99mTc-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 1998;98:1869–1874.PubMedCrossRefGoogle Scholar
  43. 43.
    Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging — a method for noninvasive assessment of myocardial motion. Radiology 1988;169:59–63.PubMedGoogle Scholar
  44. 44.
    Power TP, Kramer CM, Shaffer AL et al. Breath-hold dobutamine magnetic resonance myocardial tagging: normal left ventricular response. Am J Cardiol 1997;80:1203–1207.PubMedCrossRefGoogle Scholar
  45. 45.
    Kramer CM, Rogers WJ, Geskin G et al. Usefulness of magnetic resonance imaging early after acute myocardial infarction. Am J Cardiol 1997;80:690–695.PubMedCrossRefGoogle Scholar
  46. 46.
    Kramer CM, Rogers WJ, Theobald TM, Power TP, Geskin G, Reichek N. Dissociation between changes in intramyocardial function and left ventricular volumes in the eight weeks after first anterior myocardial infarction. J Am Coll Cardiol 1997;30:1625–1632.PubMedCrossRefGoogle Scholar
  47. 47.
    Marcus JT, Götte MJW, Van Rossum AC et al. Myocardial function in infarcted and remote regions early after infarction in man: assessment by magnetic resonance tagging and strain analysis. Magn Reson Med 1997;38:803–810.PubMedCrossRefGoogle Scholar
  48. 48.
    De Roos A, van der Wall EE. Magnetic resonance imaging and spectroscopy of the heart. Curr Opin Cardiol 1991;6:946–952.PubMedCrossRefGoogle Scholar
  49. 49.
    Bottomley PA. MR spectroscopy of the heart: the status and the challenges. Radiology 1994;191:593–612.PubMedGoogle Scholar
  50. 50.
    De Roos A, Doornbos J, Luyten PR, Oosterwaal LJMP, Van der Wall EE, Den Hollander JA. Cardiac metabolism in patients with dilated and hypertrophic cardiomyopathy: assessment with proton decoupled P-31 MR spectroscopy. J Magn Reson Imaging 1992;2:711–719.PubMedCrossRefGoogle Scholar
  51. 51.
    Bottomley PA. Noninvasive study of high-energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy. Science 1985;229:769–772.PubMedCrossRefGoogle Scholar
  52. 52.
    Blackledge MJ, Rajagopalan B, Oberhaensli RD, Bolas NM, Styles P, Radda G. Quantitative studies of human cardiac metabolism by 31P rotation-frame NMR. Proc Natl Acad Sci USA 1987;84:4283–4287.PubMedCrossRefGoogle Scholar
  53. 53.
    Schaefer S, Gober J, Valenza M et al. Nuclear magnetic resonance imaging-guided phosphorus-31 spectroscopy of the human heart. J Am Coll Cardiol 1988;12:1449–1455.PubMedCrossRefGoogle Scholar
  54. 54.
    Lamb HJ, Doornbos J, Den Hollander JA et al. Reproducibility of human cardiac 31P-NMR spectroscopy. NMR Biomed 1997;9:217–227.CrossRefGoogle Scholar
  55. 55.
    Bottomley PA. The trouble with spectroscopy papers. Radiology 1991;181:344–350.PubMedGoogle Scholar
  56. 56.
    Lamb HJ, Beyerbacht HP, Ouwerkerk R et al. Metabolic response of normal human myocardium to high-dose atropine-dobutamine stress studied by P31-MRS. Circulation 1997;96:2969–2977.PubMedCrossRefGoogle Scholar
  57. 57.
    Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 1990;323:1593–1600.PubMedCrossRefGoogle Scholar
  58. 58.
    Yabe T, Mitsunama K, Okada M, Morikawa S, Inubushi T, Kinoshita M. Detection of myocardial ischemia by 31P magnetic resonance spectroscopy during handgrip exercise. Circulation 1994;89:1709–1716.PubMedCrossRefGoogle Scholar
  59. 59.
    Yabe T, Mitsunami K, Inubishi T, Kinoshita M. Quantitative measurements of cardiac phosphorous metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Circulation 1995;92:15–23.PubMedCrossRefGoogle Scholar
  60. 60.
    Neubauer S, Horn M, Cramer M et al. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 1997;96:2190–2196.PubMedCrossRefGoogle Scholar
  61. 61.
    Bottomley PA, Weiss RG. Non-invasive magnetic-resonance detection of creatine depletion in non-viable infarcted myocardium. Lancet 1998;351:714–718.PubMedCrossRefGoogle Scholar
  62. 62.
    Van der Wall EE, Vliegen HW, De Roos A, Bruschke AVG. Magnetic resonance imaging in coronary artery disease. Circulation 1995;92:2723–2729.PubMedCrossRefGoogle Scholar
  63. 63.
    Van der Wall EE, Bax JJ. Current clinical relevance of cardiovascular magnetic resonance and its relationship to nuclear cardiology. J Nucl Cardiol 1999;6:462–469.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

There are no affiliations available

Personalised recommendations