Advertisement

Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular Malaysia

  • E. C. Ashton
  • P. J. Hogarth
  • R. Ormond
Part of the Developments in Hydrobiology book series (DIHY, volume 145)

Abstract

Decomposition of Rhizophora apiculata, Rhizophora mucronata, Bruguiera parviflora and Sonneratia alba leaves was studied in situ using litter bags in both Cleared and Virgin Jungle Reserve (VJR) mangrove forests in Peninsular Malaysia. A single exponential model best described the rate of decomposition for each species. All leaf species decomposed faster in the VJR site than in the Cleared site (R. apiculata P <0.05, R. mucronata P <0.01, B. parviflora P <0.01, S. alba not significant and mixed bags P <0.05). The rate of decomposition was species specific: Sonneratia alba leaves decomposed the fastest (P <0.001) in both sites. The time in days required for the loss of half the initial dry mass (t 50) was Cleared site: R. apiculata 76, R. mucronata 122, B. parviflora 122, S. alba 22, mixed 51; VJR: R. apiculata 43, R. mucronata 34, B. parviflora 70, S. alba 15 and mixed 32. Increasing litter diversity, by mixing leaves of different species in bags, had no effect on decomposition rate. The mass of air controls showed an initial decline to 65% in 14 d but then remained fairly constant (t 50=108 d). This initial loss may represent the reaching of dissloved orgaine matter. Water control (mixed metter bags submerged in seawater) had a t 50 of 10 d, a rate significantly different (P <0.01) from air controls. Our results show that breakdown of leaf litter is site and species dependent. This affects ecological functioning of the mangrove ecosystem and may have implications for management and conservation of mangroves.

Keywords

decomposition litter bags diversity ecosystem function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksornkoae, S., 1986. Mangrove ecosystem general background. In: Training Course on Life History of Selected Species of Flora and Fauna in Mangrove Ecosystems. UNDP/UNESCO Regional Project (RAS/86/120): 17–23.Google Scholar
  2. Alongi, D. M., A. Sasekumar, F. Tirendi & P. Dixon, 1998. The influence of stand age on benthic decomposition and recycling of organic matter in managed mangrove forests of Malaysia. J. exp. mar. Biol. Ecol. 225: 197–218.CrossRefGoogle Scholar
  3. Ashton, E. C., 1999. Biodiversity in Two Managed Mangrove Forests in Peninsular Malaysia. Doctoral thesis, University of York: 411 pp.Google Scholar
  4. Basaguren, A. & J. Pozo, 1994. Leaf litter processing of alder and eucalyptus in the Aguera stream system (Northern Spain) II Macroinvertebrates associated. Arch. Hydrobiol. 132: 57–68.Google Scholar
  5. Boonruang, P.. 1978. The degradation rates of mangrove leaves of Rhizophora apiculata (Bl.) and Avicennia marina (Forsk.) Vierh. at Phuket Island, Thailand. Research Bulletin No. 26. Phuket Marine Biological Centre, Thailand: 7.Google Scholar
  6. Bunt, J. S., K. G. Boto & G. Boto, 1979. A survey method for estimating potential levels of mangrove forest primary production. Mar. Biol. 52: 123–128.CrossRefGoogle Scholar
  7. Camilleri, J. C., 1982. Leaf-litter processing by invertebrates in a mangrove forest in Queensland. Mar. Biol. 114: 139–145.Google Scholar
  8. Camilleri, J. C. & G. Ribi, 1986. Leaching of dissolved organic carbon (DOC) from dead leaves, formation of flakes of DOC and feeding on flakes by crustaceans in mangroves. Mar. Biol. 91: 337–344.CrossRefGoogle Scholar
  9. Cintron, G. & Y. S. Schaeffer-Novelli, 1984. Methods for studying mangrove structure. In: Snedaker, S. C. & J. C. Snedaker (eds), The Mangrove Ecosystem: Research Methods. UNESCO, Paris: 91–113.Google Scholar
  10. Cundell, A. M., M. S. Brown, R. Stanford & R. Mitchell, 1979. Microbial degradation of Rhizophora mangle leaves immersed in the sea. Estuar. coast. Mar. Sci. 9: 281–286.CrossRefGoogle Scholar
  11. English, S., C. Wilkinson & V. Baker (eds), 1994. Survey Manual for Tropical Marine Resources. Australian Institute of Marine Science, Townsville, Australia: 119–196.Google Scholar
  12. Fell, J. W., R. C. Cefalu, I. M. Masters & A. S. Tallman, 1975. Microbial activity in the mangrove (Rhizophora mangle) leaf detritus system. In Walsh, G. E., S. C. Snedaker & H. J. Teas (eds), Proc. Int. Symp. Biology and Management of Mangroves, Honolulu, 1974, vol II University of Florida, Gainesville Florida: 23–42.Google Scholar
  13. Gan, B. K., 1995. A working plan for the Matang mangrove forests Perak (fourth revision). Published by the State Forest Department of Perak Darul Ridzuan, Malaysia: 214.Google Scholar
  14. Gee, J. M. & P. J. Somerfield, 1997. Do mangrove diversity and leaf litter decay promote meiofaunal diversity? J. exp. mar. Biol. Ecol. 218: 13–33.CrossRefGoogle Scholar
  15. Golley, F, H. T. Odum & R. F. Wilson, 1962. The structure and metabolism of a Puerto Rico mangrove forest in May. Ecology 43: 9–19.CrossRefGoogle Scholar
  16. Gong, W. K. & J. E. Ong, 1995. The use of demographic studies in mangrove silviculture. Hydrobiologia 295: 255–261.CrossRefGoogle Scholar
  17. Gong, W. K., J. E. Ong, C. H. Wong & G. Dhanarajan, 1984. Productivity of mangrove trees and its significance in a managed mangrove ecosystem in Malaysia. In Soepadmo, E., A. N. Rao & D. J. Macintosh (eds), Proc. UNESCO As. Symp. Mangr. Env.-Res and Manag. University Malaya, Malaysia: 216–225.Google Scholar
  18. Haron, H. A. H., 1981. A working plan for the second 30-year rotation of the Matang Mangrove Forest Reserve Perak, the first 10-year period 1980-1989. State Forestry Department, Perak: 115.Google Scholar
  19. Hooper, D. U. & P. M. Vitousek, 1998. Effects of plant composition and diversity on nutrient cycling. Ecol. Mono 68: 121–149.CrossRefGoogle Scholar
  20. Jolliffe, P. A., 1997. Are mixed populations of plant species more productive than pure stands? Oikos 80: 595–606.CrossRefGoogle Scholar
  21. Lee, S. Y., 1995. Mangrove outwelling: a review. Hydrobiologia 295: 203–212.CrossRefGoogle Scholar
  22. Lu, C. & P. Lin, 1990. Studies on litter fall and decomposition of Bruguiera sexangula (Lour.) Poir, community on Hainan Island, China. Bull. Mar. Sci. 47: 139–148.Google Scholar
  23. Mackey, A. P. & G. Smail, 1996. The decomposition of mangrove litter in a subtropical mangrove forest. Hydrobiologia 332: 93–98.CrossRefGoogle Scholar
  24. Mall, L. P., V. P. Singh & A. Garge, 1991. Study of biomass, litterfall, litter decomposition and soil respiration in monogeneric and mixed mangrove forests of Andaman Islands. Trop. Ecol. 32: 144–152.Google Scholar
  25. McNaughton, S. J., 1993. Biodiversity and function of grazing ecosystems. In Schulze, E. D. & H. A. Mooney (eds), Biodiversity and Ecosystem Function. Springer, Berlin: 361–383.Google Scholar
  26. Naeem, S. & S. Li, 1997. Biodiversity enhances ecosystem reliability. Nature 390: 507–509.CrossRefGoogle Scholar
  27. Naeem, S., L. Thompson, S. Lawler, J. H. Lawton & R. M. Woodfin, 1994. Declining biodiversity can alter the performance of ecosystems. Nature 368: 734–737.CrossRefGoogle Scholar
  28. Neilson, M. J. & G. N. Richards, 1989. Chemical composition of degrading mangrove leaf litter and changes produced after consumption by mangrove crab Neosarmatium smithii (Crustacea: Decapoda: Sesarmidae). J. Chem. Ecol. 15: 1267–1283.CrossRefGoogle Scholar
  29. Neilson, M. J., R. L. Giddins & G. N. Richards, 1986. Effects of tannins on the palatibility of mangrove leaves in the tropical sesarmid crab Neosarmatium smithii (Crustacea: Decapoda: Sesarmidae). Mar. Ecol. Prog. Ser. 34: 185–186.CrossRefGoogle Scholar
  30. Newell, S. Y., J. W. Fell, A. Statzell-Tallman, C. Miller & R. Cefalu, 1984. Carbon and nitrogen dynamics in decomposing leaves of three coastal marine vascular plants of the subtropics. Aquat. Bot. 19: 183–192.CrossRefGoogle Scholar
  31. Odum, W. E. & E. J. Heald, 1975. The detritus-based food web of an estuarine mangrove community. In Cronin, L. E. (ed.), Estuarine Research. Academic Press, New York: 265–286.Google Scholar
  32. Ong, J. E., 1995. The ecology of mangrove conservation and management. Hydrobiologia 295: 343–351.CrossRefGoogle Scholar
  33. Ong, J. E., W. K. Gong, C. H. Wong & G. Dhanarajan, 1984. Contribution of aquatic productivity in managed mangrove ecosystem in Malaysia. In Soepadmo, E., A. N. Rao & D. J. Macintosh (eds), Proc. UNESCO As. Symp. Mangr. Env.-Res and Manag. University Malaya, Malaysia: 209–215.Google Scholar
  34. Poovachiranon, S., K. Boto & N. Duke, 1986. Food preference studies and ingestion rate measurements of the mangrove amphipod Parhyale hawaiensis. J. exp. mar. Biol. Ecol. 98: 129–140.CrossRefGoogle Scholar
  35. Rao, R. G., A. F Woitchik, L. Goeyens, A. Vanriet, J. Kazungu & F. Dehairs, 1994. Carbon, nitrogen contents and stable carbonisotope abundance in mangrove leaves from an East-African coastal lagoon (Kenya). Aquat. Bot. 47: 175–183.CrossRefGoogle Scholar
  36. Rice, D. L. & K. R. Tenore, 1981. Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes. Estuar. coast. shelf Sci. 13: 681–690.CrossRefGoogle Scholar
  37. Robertson, A. I., 1988. Decomposition of mangrove leaf litter in tropical Australia. J. exp. mar. Biol. Ecol. 116: 235–247.CrossRefGoogle Scholar
  38. Robertson, A. I., D. M. Alongi & K. G. Boto, 1992. Food chains and carbon fluxes. In Robertson, A. I. & D. M. Alongi (eds), Tropical Mangrove Ecosystems. American Geophysical Union, Washington, DC: 293–326.CrossRefGoogle Scholar
  39. Schleyer, M. H., 1986. Decomposition in estuarine ecosystems. J. Limnol. Soc. South Afr. 12: 90–98.Google Scholar
  40. Snedaker, S. C. & J. G. Snedaker (eds), 1984. The Mangrove Ecosystem: Research Methods. Monographs on oceanographie methodology 8. UNESCO, Paris: 251.Google Scholar
  41. Spalding, M. D., F. Blasco & C. D. Field (eds), 1997. World Mangrove Atlas. The International Society for Mangrove Ecosystems, Okinawa, Japan: 178.Google Scholar
  42. Steinke, T. D., A. D. Barnabas & R. Samuru, 1990. Structural changes and associated microbial activity accompanying decomposition of mangrove leaves in Mgeni Estuary. S. Afr. J. Bot. 56: 39–48.Google Scholar
  43. Steinke, T. D., G. Naidoo & L. M. Charles, 1983. Degradation of mangrove leaf and stem tissues in situ in mgeni Estuary, South Africa. In Teas, H. J. (ed.). Tasks for Vegetation Science 8. Dr W. Junk Publishers, The Hague: 141–149.Google Scholar
  44. Steinke, T. D., A. J. Holland & Y Singh, 1993a. Leaching losses during decomposition of mangrove leaf litter. S. Afr. J. Bot. 59: 21–25.Google Scholar
  45. Steinke, T. D., A. Rajh & A. J. Holland, 1993b. The feeding behaviour of the red mangrove crab Sesarma meinerti De Man, 1887 (Crustacea: Decapoda: Grapsidae) and its effect on the degradation of mangrove leaf litter. S. Afr. J. Mar. Sci. 13: 151–160.CrossRefGoogle Scholar
  46. Stewart, B. A. & B. R. Davies, 1989. The influence of different litterbag designs on the breakdown of leaf material in a small mountain stream. Hydrobiologia 183: 173–177.CrossRefGoogle Scholar
  47. Tam, N. F. Y, L. L. P. Vrijmoed & Y. S. Wong, 1990. Nutrient dynamics associated with leaf decomposition in a small subtropical mangrove community in Hong Kong. Bull. Mar. Sci. 47: 68–78.Google Scholar
  48. Tam, N. F. Y, Y S. Wong, C. Y. Lan & L. N. Wang, 1998. Litter production and decomposition in a subtropical mangrove swamp receiving wastewater. J. exp. mar. Biol. Ecol. 226: 1–18.CrossRefGoogle Scholar
  49. Tietjen, J. H. & D. M. Alongi, 1990. Population growth and effects of nematodes on nutrient regeneration and bacteria associated with mangrove detritus from northeastern Queensland (Australia). Mar. Ecol. Prog. Ser. 68: 169–179.CrossRefGoogle Scholar
  50. Tilman, D., D. Wedin & J. Knops, 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718–720.CrossRefGoogle Scholar
  51. Twilley, R. R., M. Pozo, V. H. Garcia, V.H. Rivera-Monroy, R. Zambrano & A. Bodero, 1997. Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111: 109–122.CrossRefGoogle Scholar
  52. Van der Valk, A. G. & P. M. Attiwill, 1984. Decomposition of leaf and root litter of Avicennia marina at Westernport Bay, Victoria, Australia. Aquat. Bot. 18: 205–221.CrossRefGoogle Scholar
  53. Wafar, S., A. G. Untawale & M. Wafar, 1997. Litterfall and energy flux in a mangrove ecosystem. Estuar. coast, shelf Sci. 44: 111–124.CrossRefGoogle Scholar
  54. Wardle, D. A., K. I. Bonner & K. S. Nicholson, 1997. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79: 247–258.CrossRefGoogle Scholar
  55. Watson, J. G., 1928. Mangrove forests of the Malay Peninsula. Malayan Forest Records No. 6: 1–275.Google Scholar
  56. Wieder, R. K. & G. E. Lang, 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63: 1636–1642.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • E. C. Ashton
    • 1
  • P. J. Hogarth
    • 1
  • R. Ormond
    • 1
  1. 1.Tropical Marine Research Unit, Department of BiologyUniversity of YorkYorkUK

Personalised recommendations