From Control to Regulation: A new prospect for metabolic control analysis

  • Louis Hue
Part of the NATO Science Series book series (ASHT, volume 74)


The era of metabolic control analysis started more than 25 years ago (Kacser & Burns, 1973; Heinrich & Rapoport, 1974). It should now come of age. Whether it has, the reader will judge. For comparison, this chapter presents the point of view of a member of the other club, the classical biochemists. After a short reminder of the early steps of metabolic control analysis, the main achievements and shortcomings of this new conceptual approach of metabolism will be briefly discussed. The analysis will lead us to reconsider metabolic pathways in a broader context, to take into account a higher level of organization and to explain large changes in flux. This will be illustrated by examples of pathological conditions. The underlying concept is homeostasis, expressed by “regulation” as opposed to “control”, the tools used to achieve homeostasis.


Ketone Body Feedback Inhibition Control Analysis Pyruvate Carboxylase Flux Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Crabtree, B. & Newsholme, E. A. (1987) A systematic approach to describing and analysing metabolic control systemsTrends Biochem. Sci. 12, 4–12 CrossRefGoogle Scholar
  2. Crane, R. K. & Sols, A. (1954) The non-competitive inhibition of brain hexokinase by glucose-6-phosphate and related compoundsJ. Biol. Chem. 210597–606PubMedGoogle Scholar
  3. Davies, S. E. C. & Brindle, K. M. (1992) Effects of overexpression of phosphofructokinase on glycolysis in the yeastSaccharomyces cerevisiae Biochemistry31, 4729–4735PubMedCrossRefGoogle Scholar
  4. Depré, C., Rider, M. H. & Hue, L. (1998) Mechanisms of control of heart glycolysisEur. J. Biochem. 258277–290PubMedCrossRefGoogle Scholar
  5. Fell, D. A. (1997)Understanding the control of metabolismPortland Press, London, U. K.Google Scholar
  6. Fell, D. A. (1999) Traditional concepts of metabolic control mislead more than enlightenThe BiochemistFebruary 1999 issue, 13–16Google Scholar
  7. Groen, A. K. (1984)Quantification of control in studies on intermediary metabolismPhD thesis, University of AmsterdamGoogle Scholar
  8. Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., Van der Meer, R. & Tager, J. M. (1982) Quantification of the contribution of various steps to the control of mitochondrial respirationJ. Biol. Chem.257, 2754–2757PubMedGoogle Scholar
  9. Groen, A. K., Vervoorn, R. C., Van der Meer, R. & Tager, J. M.(1983)Control of gluconeogenesis in rat liver cells. I. Kinetics of the individual enzymes and the effect of glucagonJ. Biol. Chem. 25814346–14353PubMedGoogle Scholar
  10. Groen, A. K., Van Roermund, C. W. T., Vervoorn, R. C. & Tager, J. M. (1986) Control of gluconeogenesis in rat liver cellsBiochem. J.237, 379–389Google Scholar
  11. Heinrich, R. & Rapoport, T. A. (1974) A linear steady-state treatment of enzymatic chains. General properties, control, and effector strengthEur. J. Biochem. 4289–95PubMedCrossRefGoogle Scholar
  12. Hers, H. G. & Hue, L. (1983) Gluconeogenesis and related aspects of glycolysisAnnu. Rev. Biochem. 52617–653PubMedCrossRefGoogle Scholar
  13. Hofineyr, J.-H. S. & Cornish-Bowden, A. (1991) Quantitative assessment of regulation in metabolic systemsEur. J. Biochem. 200223–236CrossRefGoogle Scholar
  14. Kacser, H. (1995) Recent developments beyond metabolic control analysisBiochem. Soc. Trans.23,387–391PubMedGoogle Scholar
  15. Kacser, H. & Burns, J. A. (1973) The control of fluxSymp. Soc. Exp. Biol.27, 65–104PubMedGoogle Scholar
  16. Nordmann, Y. (1991) Human hereditary porphyrias, pp 974–985 inOxford Textbook of Clinical Hepatologyvol.2(ed. McIntyre, N., Benhamou, J. P. & Bircher, J.) Oxford University Press, New YorkGoogle Scholar
  17. Salter, M., Knowles, R. G. & Pogson, C. I.(1994)Metabolic controlEssays Biochem. 28, 1–12 PubMedGoogle Scholar
  18. Schaaff, I., Heinisch, J. & Zimmermann, F. K. (1989) Overproduction of glycolytic enzymes in yeastYeast 5285–290PubMedCrossRefGoogle Scholar
  19. Sprang, S. R. (1997) G protein mechanisms: insights from structural analysisAnnu. Rev. Biochem.66, 639–678PubMedCrossRefGoogle Scholar
  20. Thomas, S. & Fell, D. A. (1998) The role of multiple enzyme activation in metabolic flux controlAdvan. Enzyme Regul. 3865–85CrossRefGoogle Scholar
  21. Van den Berghe, G. (1978) Metabolic effects of fructose in the liver, Curr.Top. Cell Regul.13, 97–135PubMedGoogle Scholar
  22. Van den Berghe, G. (1995) Disorders of fructose metabolism, pp 95–99, inInborn Metabolic Diseases2nd edn., (ed. Fernandes, J., Saudubray, J.-M. & Van den Berghe, G.) Springer-Verlag, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Louis Hue
    • 1
  1. 1.Hormone and Metabolic Research UnitUniversité Catholique de Louvain, and Institute of Cellular PathologyBrusselsBelgium

Personalised recommendations