Advertisement

Glycogen Structure: an Evolutionary View

  • Enrique Meléndez-Hevia
  • Ruth Meléndez
  • Enric I. Canela
Chapter
Part of the NATO Science Series book series (ASHT, volume 74)

Abstract

Muscle glycogen is the fuel for anaerobic glycolysis, a metabolic process to obtain ATP quickly and to support rapid “explosive” movement. The polymer structure of the glycogen molecule is a very efficient way of having a large amount of stored cytoplasmic glucose without a significant increase in osmolarity. Thus, the total amount of fuel stored in liver cells as glycogen (around 10% by weight) is equivalent to 200-400 mM glucose, whereas the concentration of glycogen is only 3.6-7.2 µM. In skeletal muscle of a trained runner the concentration of glycogen is about 2 µM, equivalent to 110 mM glucose (around 1-2% by weight). The branching structure of glycogen supplies many points for phosphorylase attack, allowing the release of more glucose at the same time.

Keywords

Chain Length Muscle Glycogen Glycogen Storage Disease Anaerobic Glycolysis Glucose Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, M. D., Lomako, J., Lomako, W. M. & Whelan, W. J. (1995) A new look at the biogenesis of glycogenFASEB J.9, 1126–1137PubMedGoogle Scholar
  2. Cárdenas, M. L. & Cornish-Bowden, A. (1989) Characteristics necessary for an inter-convertible enzyme cascade to generate a highly sensitive response to an effectorBiochem. J.257 339–345PubMedGoogle Scholar
  3. David, M., Petit, W. A., Laughlin, M. R., Shulman, R. G.et al.(1990) Simultaneous synthesis and degradation of rat liver glycogenJ. Clin. Invest.86,612–617PubMedCrossRefGoogle Scholar
  4. Dobzhansky, T. (1973) Nothing in biology makes sense except in the light of evolutionAm. Biol. Teacher35, 125–129CrossRefGoogle Scholar
  5. Gibson, W. B., Brown, B. I. & Brown, D. H. (1971) Studies of glycogen branching enzyme. Preparation and properties of a-1,4-glucan-a-1,4-glucan 6-glycosyltransferase and its action on the characteristic polysccharide of the liver of children with type IV glycogen storage diseaseBiochemistry 104253–4262PubMedCrossRefGoogle Scholar
  6. Gunja-Smith, Z., Marshall, J. J., Mercier, C., Smith, E. E. & Whelan, W. J. (1971) A revision of the Meyer—Bernfeld model of glycogen and amylopectinFEBS Lett. 12101–104CrossRefGoogle Scholar
  7. Heinrich, R., Montero, F., Klipp, E., Waddell, T. G. & Meléndez-Hevia, E. (1997) Theoretical approaches to the evolutionary optimization of glycolysis: kinetic and thermodynamic constraintsEur. J. Biochem. 243191–201PubMedCrossRefGoogle Scholar
  8. Krisman, C. R., Tomalski, D. S. & Raffo, S. (1985) Branching enzyme assay: selective quantitation of the a-1,6-linked glucosyl residues involved in the branching pointsAnal. Biochem.147,491–496PubMedCrossRefGoogle Scholar
  9. Lomako, J., Lomako, W. M., Whelan, W. J., Dombro, R. S.et al.(1993) Glycogen synthesis in the astrocyte: from glycogenin to proglycogen to glycogenFASEB J. 71386–1393PubMedGoogle Scholar
  10. Madsen, N. B. & Cori, C. F. (1958) The binding of glycogen and phosphorylase, J.Biol. Chem. 2331251–1254PubMedGoogle Scholar
  11. Meléndez, R., Meléndez-Hevia, E. & Cascante, M. (1997) How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure buildingJ. Mol. Evol.45, 446–455PubMedCrossRefGoogle Scholar
  12. Meléndez, R., Meléndez-Hevia, E., Mas, F. Mach, J. & Cascante, M. (1998) Physical constraints in the synthesis of glycogen that influence its structural homogeneity: a two-dimensional approachBiophys. J.75,106–114PubMedCrossRefGoogle Scholar
  13. Meléndez, R., Meléndez-Hevia, E. & Canela, E. I. (1999) The fractal structure of glycogen: a clever solution to optimize the cell metabolismBiophys. J. 771327–1332PubMedCrossRefGoogle Scholar
  14. Meléndez-Hevia, E., Waddell, T. G. & Shelton, D. E. (1993) Optimization of molecular design in the evolution of metabolism: the glycogen moleculeBiochem. J.295, 477–483Google Scholar
  15. Meléndez-Hevia, E., Waddell, T. G., Heinrich, R. & Montero, F. (1997a) Theoretical approaches to the evolutionary optimization of glycolysis. Chemical analysisEur. J. Biochem. 244527–543CrossRefGoogle Scholar
  16. Meléndez-Hevia, E., Guinovart, J. & Cascante, M. (1997b) The role of channelling in glycogen metabolism, pp. 269–291 inChannelling in Intermediary Metabolism(ed. Agius, L. & Sherratt, H. S. A.), Portland Press, LondonGoogle Scholar
  17. Mercier, C. & Whelan, W. J. (1970) The fine structure of glycogen from type iv glycogen-storage diseaseEur. J. Biochem. 6579–583CrossRefGoogle Scholar
  18. Smith, E. E. (1968) Enzymic control of glycogen structure, pp. 203–213 inControl of Glycogen Metabolism(ed. Whelan, W. J.), Academic Press, LondonGoogle Scholar
  19. Tolmaski, D. S. & Krisman, C. R. (1987) The degree of branching in (a1,4)—(a1,6)-linked glucopolysaccharides is dependent on intrinsic properties of the branching enzymesEur. J. Biochem.168,393–397CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Enrique Meléndez-Hevia
    • 1
  • Ruth Meléndez
    • 2
  • Enric I. Canela
    • 2
  1. 1.Departamento de Bioquímica, Facultad de BiologíaUniversidad de La LagunaTenerife, Canary IslandsSpain
  2. 2.Departament de Bioquímica, Facultat de QuímicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations