Skip to main content

Formation of Submicrocrystalline Structure in TiAl and Ti3Al intermetallics via Hot Working

  • Chapter
Investigations and Applications of Severe Plastic Deformation

Part of the book series: NATO Science Series ((ASHT,volume 80))

Abstract

A method based on initiation of dynamic recrystallization (DRX) during hot working has been developed to produce a submicrocrystalline (SMC) structure (d < 1 µm) in massive work-pieces of hard-to-deform materials, like titanium aluminides, The method involves continuous grain refinement due to dynamic recrystallization at a decreasing temperature. A microstructure with a grain size of 0.1 to 0.4 µm and no porosity was produced in different TiAl and Ti3Al based alloys. Partial disordering was detected in a Ti3Al alloy with the SMC structure. The grain refinement hardened the intermetallic alloys at room temperature (RT). In a fully ordered Ti3Al alloy RT ductility increased when the grain size decreased, while the ductility of a partially disordered SMC Ti3Al and TiAl alloys was close to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, Y-W. (1994) Ordered intermetallic alloys, Part III: gamma titanium aluminides, JOM 46 (7), 30–40.

    Article  CAS  Google Scholar 

  2. Imayev, R. M., Imayev, V. M., and Salishchev, G. A. (1992) Formation of submicrocrystalline structure in TiAl intermetallic compound, J. Mat. Sci. 21, 4465–4471.

    Article  Google Scholar 

  3. Imayev, V. M., Salishchev, G. A., Imayev, R. M., Shagiev, M. R., Gabdullin, N. K., and Kuznetsov, A. V. (1997) An approach to ductility improvement of TiAl and Ti3Al titanium aluminides based on microstructure control, in Structural Intermetallics 1997, eds. M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle, R. Wagner, M. Yamaguchi, The Minerals, Metals and Mater. Soc., Warrendale, PA, 505–514.

    Google Scholar 

  4. Imayev, R. M., Salishchev, G. A., Imayev, V. M., Shagiev, M. R., Gabdullin, N. K., Kuznetsov, A. V., Senkov, O. N., Froes, F. H. (1998) Low-temperature superplasticity of submicrocrystalline intermetallics, Mater. Sci. Forum 304306, 195–200.

    Google Scholar 

  5. Imayev, R. M., Gabdullin, N. K., Salishchev, G. A., Senkov, O. N., Imayev, V. M., and Froes, F. H. (1999) Effect of grain size and partial disordering on ductility of Ti3Al at temperatures of 20°C to 600°C, Acta Mater. 47 (6), 1809–1821.

    Article  CAS  Google Scholar 

  6. Koch, C. C. and Cho, Y. S. (1992) Nanocrystals by high energy ball milling, Nanostruct. Mater. 1, 207–212.

    Article  CAS  Google Scholar 

  7. Valiev, R. Z., Korznikov, A. V., and Mulyukov, R. R. (1993) Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Mater. Sci. Eng. A168, 141–148.

    CAS  Google Scholar 

  8. Kaibyshev, O. A., Glazunov, S. G., Salishchev, G. A., Imayev, R. M., and Ivanov, V. I. (1987) Effect of hot deformation on the structure of cast Ti-36wt.%Al alloy, Phys. Met. Metall. 64(5), 1005–1010.

    CAS  Google Scholar 

  9. Glovers, G. and Sellars, C. M. (1973) Recovery and recrystallization during high temperature deformation of a-iron, Met. Trans. A4, 165–774.

    Google Scholar 

  10. Salishchev, G., Zaripova, R., Galeev, R., and Valiakhmetov, O. (1995) Nanocrystalline structure formation in materials and their deformation behaviour, Nanostruct. Mater. 6, 913–916.

    Article  Google Scholar 

  11. Kaibyshev, O. A. (1992) Superplasticity of Alloys, Intermetallics, and Ceramics, Springer-Verlag Berlin Heidelberg, Berlin, 1–317.

    Book  Google Scholar 

  12. Blackburn, M. J. and Williams, J. C. (1969) Strength deformation modes and fracture in TiAl alloys, Trans. Am. Soc. Metals 62 (2), 398–409.

    CAS  Google Scholar 

  13. Shechtman, D., Blackburn, M. J., Lipsitt, H. A. (1974) The plastic deformation of TiAl, Met.Trans. A23, 1373–1381.

    Article  Google Scholar 

  14. Imayev, V. M., Imayev, R. M., Salishchev, G. A., Shagiev, M. R., and Kuznetsov, A. V. (1997) Effect of strain rate on twinning and room temperature ductility of TiAl with fine equiaxed microstructure, Scripta Mater. 36 (8), 891–897.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Salishchev, G. et al. (2000). Formation of Submicrocrystalline Structure in TiAl and Ti3Al intermetallics via Hot Working. In: Lowe, T.C., Valiev, R.Z. (eds) Investigations and Applications of Severe Plastic Deformation. NATO Science Series, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4062-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4062-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6281-4

  • Online ISBN: 978-94-011-4062-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics