Skip to main content

On the Grain-Size Dependence of Metal Fatigue: Outlook on the Fatigue of Ultrafine-Grained Metals

  • Chapter
Investigations and Applications of Severe Plastic Deformation

Part of the book series: NATO Science Series ((ASHT,volume 80))

Abstract

With the development of new materials processing techniques such as severe plastic deformation (SPD) with the equal-channel angular (ECA) extrusion technique [1], bulk structural materials of very fine grain size (UFG: ultrafme grain size) and extraordinary strength are becoming a reality. Among the mechanical properties of interest, the fatigue strength is considered to be of special importance. It is therefore timely to consider critically to what extent a drastically reduced grain size, compared to conventional grain size, will be expected to affect the fatigue behavior. Because of the lack of detailed studies so far, such considerations must of necessity be based not only on the limited data on fatigue of SPD-material but also largely on some basic considerations and “extrapolations” from work on materials of conventional grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valiev, R. (1997) Structure and mechanical properties of ultrafine-grained metals, Mater. Sci. Eng. A234, 59–66.

    Google Scholar 

  2. Armstrong, R.W (1999) Dislocation mechanics description of polycrystal plastic flow and fracturing behaviors, in Mechanics and Materials: Fundamentals and Linkages, edited by M. A. Meyers, R. W. Armstrong and H. Kirchner, John Wiley & Sons, Inc. pp. 363–398.

    Google Scholar 

  3. Oates, G. and Wilson, D.V. (1964) The effects of dislocation locking and strain ageing on the fatigue limit of low-carbon steel, Acta metall. 12, 21–33.

    Article  CAS  Google Scholar 

  4. Taira, S., Tanaka, K. and Hoshina, M. (1979) Grain size effect on crack nucleation and growth in longife fatigue of low-carbon steel, in Fatigue Mechanisms, edited by J.T. Fong, ASTM STP 675, American Soc. for Testing and Materials, Philadelphia, Pa., pp. 135–173.

    Chapter  Google Scholar 

  5. Forrest, P.G. and Tate, A.E.L. (1964–65) The influence of grain size on the fatigue behaviour of 70/30 brass, J. Inst. Metals 93, 438–444.

    Google Scholar 

  6. Thompson, A.W. and Backofen, W.A. (1971) The effect of grain size on fatigue, Acta metall. 19, 597–606.

    Article  CAS  Google Scholar 

  7. Lukáš, P. and Kunz, L. (1987) Effect of grain size on the high cycle fatigue behaviour of polycrystalline copper, Mater. Sci. Eng. 85, 67–75.

    Article  Google Scholar 

  8. Starke, E.A. and Lütjering, G. (1978) Cyclic plastic deformation and microstructure, in Fatigue and Microstructure, American Society for Metals, Metals Park, Ohio, pp. 205–243.

    Google Scholar 

  9. Gerberich, W.W. and Moody, N.R. (1979) A review of fatigue fracture topology effects on threshold and growth mechanisms, in Fatigue Mechanisms, edited by J.T. Fong, ASTM STP 675, American Soc. for Testing and Materials, Philadelphia, Pa., pp. 292–341.

    Chapter  Google Scholar 

  10. Wang, R. (1982) Untersuchungen der mikroskopischen Vorgänge bei der Wechselverformung von Kupferein- und vielkristallen, Doctorate Thesis, University of Stuttgart.

    Google Scholar 

  11. Mughrabi, H. and Wang, R. (1988) Cyclic stress-strain response and high-cycle fatigue behaviour of copper polycrystals, in Basic Mechanisms in Fatigue of Metals, edited by P. Lukáš and J. Polák, Elsevier, Amsterdam, pp. 1–13.

    Google Scholar 

  12. Agnew, S.R. and Weertman, J.R. (1998) Cyclic softening of ultrafine grain copper, Mater. Sci. Eng. A244, 145–153.

    CAS  Google Scholar 

  13. Agnew, S.R., Vinogradov, A. Yu., Hashimoto, S. and Weertman, J.R. (1999), Overview of fatigue performance of Cu processed by severe plastic deformation, submitted to Mater. Sci. Eng. A.

    Google Scholar 

  14. Morrow, JoDean (1965) Cyclic plastic strain energy and fatigue of metals, in Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, American Soc. for Testing and Materials, Philadelphia, Pa., pp. 45–87.

    Chapter  Google Scholar 

  15. Landgraf, R.W. (1970) The resistance of metals to cyclic deformation, in Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP 467, American Soc. for Testing and Materials, Philadelphia, Pa., pp. 3–36.

    Chapter  Google Scholar 

  16. Lukáš, P. and Klesnil, M. (1973) Cyclic stress-strain response and fatigue life of metals in low amplitude region, Mater. Sci. Eng. 11, 345–356.

    Article  Google Scholar 

  17. Vinogradov, A., Kaneko, Y., Kitagawa, K., Hashimoto, S. and Valiev, R. (1997) Cyclic response of ultrafine-grained copper at constant plastic strain amplitude, Scripta mater. 36,1345–1351.

    Article  CAS  Google Scholar 

  18. Vinogradov, A., Kaneko, Y., Kitagawa, K., Hashimoto, S. and Valiev, R. (1998) On the cyclic response of ultrafine-grained copper, Mater. Sci. Forum 269–272, 987–992.

    Article  Google Scholar 

  19. Wu, S.D., Wang, Z.G., Li, G.Y., Alexandrov, I.V. and Valiev, R.Z. (1999) Cyclic deformation characteristic of submicrometer copper processed by ECAE technique, in FATIGUE99, Proc. of the Seventh International Fatigue Congress, Vol. 1, Higher Education Press, Beijing, P.R. China & EMAS Ltd., West Midlands, UK, pp. 247–252.

    Google Scholar 

  20. Bretschneider, J. (1999) private communication.

    Google Scholar 

  21. Thiele, E., Bretschneider, J., Hollang, L., Schnell, N. and Holste, C. (1999) Influence of thermal treatment and cyclic plastic deformation on the defect structure in ultrafine-grained nickel, in the present proceedings.

    Google Scholar 

  22. Tavernelli, J.F. and Coffin, L.F. (1959) A compilation and interpretation of cyclic strain fatigue tests on metals, Trans. Am. Soc. Metals 51, 438–453.

    Google Scholar 

  23. Abson, D.J. and Jonas, J.J. (1970) The Hall-Petch relation and high-temperature subgrains, Metal. Sci. J. 4, 24–28.

    CAS  Google Scholar 

  24. Staker, M.R. and Holt, D.L. (1972) Dislocation cell size in deformed copper, Acta metall 20, 569–576.

    Article  CAS  Google Scholar 

  25. Lloyd, D.J. and Kenny, D. (1978) The stress-strain behaviour of copper over a large strain range, Scripta metall 12,903–907.

    Article  Google Scholar 

  26. Luvten, J., Delaey, L. and Aernoudt, E. (1978) Strength and substructure evolution in drawn copper-alumina wires, Mater. Sci. Eng. 32, 193–196.

    Article  Google Scholar 

  27. Essmann, U. and Mughrabi, H. (1978) Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Phil. Mag. A, 40, 731–756.

    Article  Google Scholar 

  28. Feltner, C.E. and Laird, C. (1967) Cyclic stress-strain response of f.c.c. metals and alloys, I. Phenome-nological experiments, II. Dislocation structures and mechanisms, Acta metal. 15, 1621–1632

    Article  CAS  Google Scholar 

  29. Feltner, C.E. and Laird, C. (1967) Cyclic stress-strain response of f.c.c. metals and alloys, I. Phenome-nological experiments, II. Dislocation structures and mechanisms, Acta metal. 15, 1633–1653.

    Article  CAS  Google Scholar 

  30. Mughrabi, H., Ackermann, F. and Herz, K. (1979) Persistent slipbands in fatigued face-centered and body-centered cubic metals, in Fatigue Mechanisms, edited by J.T. Fong, ASTM STP 675, American Soc. for Testing and Materials, Philadelphia, Pa., pp. 69–105.

    Chapter  Google Scholar 

  31. Kawazoe, H., Yoshida, M., Basinski, Z.S. and Niewczas, M. (1999) Dislocation microstructures in finegrained Cu polycrystals fatigued at low amplitude, Scripta mater. 40, 639–644.

    Article  CAS  Google Scholar 

  32. Essmann, U., Goesele, U. and Mughrabi, H. (1981) A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions, Phil. Mag. A 44, 405–426.

    Article  CAS  Google Scholar 

  33. Mughrabi, H., Wang, R., Differt, K. and Essmann, U. (1983) Fatigue crack initiation by cyclic slip irreversibilities in high-cycle fatigue, in Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, edited by J. Lankford, D.L. Davidson, W.L. Morris and R.P. Wei, ASTM STP 811, American Soc. for Testing and Materials, Philadelphia, Pa., pp. 5–45.

    Chapter  Google Scholar 

  34. Liu, W., Bayerlein, M., Mughrabi, H., Day, A. and Quested, P.N. (1992) Crystallographic features of intergranular crack initiation in fatigued copper polycrystals, Acta, metall. mater. 40, 1763–1771.

    Article  CAS  Google Scholar 

  35. Bay, B., Hansen, N., Hughes, D.A. and Kuhlmann-Wilsdorf, D. (1992) Evolution of fcc deformation structure in polyslip, Acta metal. mater. 40 205–219.

    Article  CAS  Google Scholar 

  36. Stolyarov, V.V., Latysh, V.V., Kolobov, Yu.R., Valiev, R.Z., Zhu, Y.D. and Lowe, T. (1999) The development of nanostructured SPD Ti for medical application, in the present proceedings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mughrabi, H. (2000). On the Grain-Size Dependence of Metal Fatigue: Outlook on the Fatigue of Ultrafine-Grained Metals. In: Lowe, T.C., Valiev, R.Z. (eds) Investigations and Applications of Severe Plastic Deformation. NATO Science Series, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4062-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4062-1_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6281-4

  • Online ISBN: 978-94-011-4062-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics