Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 79))

  • 291 Accesses

Abstract

In one-dimensional (1D) molecular crystals with finite length 2L ≪ λ (λ is the optical wavelength) an overwhelming part of the total oscillator strength is concentrated in the lowest excitonic state and is equal to F 1 ≅ 0.85 f 0(2L/a), where f 0 is the oscillator strength of a monomer and a is the lattice constant. This leads to the superradiance from the lowest excitonic state and its domination in the absorption spectrum of the crystal. We show that self-trapping of excitons destroys this simple picture so that it takes place only for short chains with length 2L small as compared to the length 2l 0 of self-trapping. For long enough chains the value of F 1 does not increase with growth of L, as it occurs in linear case, but tends to the saturation limit F 1≅5f 0(l 0/a). The oscillator strength of the next bright state also tends to the same limit with growth of L, but it takes place only at the length L > 9l 0, and analogous relations are true for the following bright states. We consider also the influence of quantum confinement and self-trapping on the superradiance of 1D molecular crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burstein, E. and Weisbuch, C. (eds) (1995) Confined Electrons and Photons. New Physics and Applications., Plenum, N.Y.

    Google Scholar 

  2. Agranovich, V.M. and Kamchatnov, A.M. (1999) Chem. Phys. 245, 173.

    Article  ADS  Google Scholar 

  3. Fidder, H., Knoester, J., and Wiersma, D.A. (1991) J. Chem. Phys. 95, 7880.

    Article  ADS  Google Scholar 

  4. Hochstrasser, R.M. and Whiteman, J.D. (1972) J. Chem. Phys. 56, 5945.

    Article  ADS  Google Scholar 

  5. De Boer, S. and Wiersma, D.A. (1990) Chem. Phys. Lett. 165, 45.

    Article  ADS  Google Scholar 

  6. Rashba, E.I. (1982) Self-Trapping of Excitons, in E.I. Rashba and M.D. Sturge (eds), Excitons, North-Holland, p.543.

    Google Scholar 

  7. Peierls, R. (1932) Ann. Phys. 13, 905.

    Google Scholar 

  8. Frenkel, J. (1931) Phys. Rev. 37, 17, 1276.

    Article  ADS  MATH  Google Scholar 

  9. Rashba, E.I. (1957) Opt. Spektrosk. 2, 75, 88; 3, 568.

    Google Scholar 

  10. Potma, E.O. and Wiersma, D.A. (1990) J. Chem. Phys. 108, 4894.

    Article  ADS  Google Scholar 

  11. Feynman, R.P. (1972) Statistical Mechanics, W.A. Benjamin, Inc., Reading,Chapter 8.

    Google Scholar 

  12. Shaw, P.B. and Whitfield, G. (1978) Phys. Rev. B17, 1495.

    ADS  Google Scholar 

  13. Deigen, E.I. and Pekar, S.I. (1951) Zh. Exp. Teor. Fiz. 21, 568.

    Google Scholar 

  14. Holstein, T. (1959) Ann. Phys. 8, 325, 343.

    ADS  Google Scholar 

  15. Rashba, E.I. (1994) Synth. Metals 64, 255.

    Article  Google Scholar 

  16. Talanov, V.I. (1964) Izv. Vuzov Radiofizika 7, 264.

    Google Scholar 

  17. Ostrovsky, L.A. (1966) Zh. Exp. Teor. Fiz. 51, 1189.

    Google Scholar 

  18. Abramowitz, M. and Stegun, I. (1968) Handbook of Mathematical Functions,Dover Publications, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Agranovich, V.M., Kamchatnov, A.M. (2000). Quantum Confinement and Superradiance of Self-Trapped Excitons from 1D J-Aggregates. In: Kajzar, F., Agranovich, M.V. (eds) Multiphoton and Light Driven Multielectron Processes in Organics: New Phenomena, Materials and Applications. NATO Science Series, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4056-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4056-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6272-2

  • Online ISBN: 978-94-011-4056-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics