Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 79))

  • 289 Accesses

Abstract

Progress in making effective optical limiting devices requires careful characterization of the material nonlinearitics as well as modeling of the propagation of optical beams through the material. We present a method to study the spectral properties of the nonlinear response as well as the results of modeling nanosecond pulse propagation in optically absorbing media. We specifically look at two-photon absorbing and reverse saturable absorbing materials in liquid hosts. The characterization technique is an excitation-femtosecond continuum probe technique. The modeling includes beam propagation through thick media (i.e. thickness much greater than the diffraction length or depth of focus) and includes the effects of index changes associated with acoustic waves generated by any absorption process. This requires a simultaneous solution to the acoustic and electromagnetic wave equations. A graphical user interface to a C++ numerical code has been developed for modeling such devices including the possibility of multiple nonlinear elements. We have extended this code for a tight focusing geometry beyond the paraxial ray approximation, but assuming cylindrical symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. «Nonlinear spectrometry of chromophores for optical limiting» D. J. Hagan, E. Miesak, R. Negres, S. Ross, J. Lim and E. W. Van Stryland, Proc. SPIE-3472, 80–90 (1998).

    Google Scholar 

  2. K. D. Belfield, B. A. Reinhardt, L. L. Brott, S. J. Clarson, O. Najjar, S. M. Pius, E. W. Van Stryland and Raluca Negres, «Synthesis and characterization of new two-photon absorbing polymers», Polymer Prep. 40, no. 1, 127–128 (1999).

    Google Scholar 

  3. M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan and E.W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids”, IEEE J Quantum Electron. QE-27, 1296–1309 (1991).

    Article  ADS  Google Scholar 

  4. T.H. Wei, D.J. Hagan, M.J. Sence, E.W. Van Stryland, J.W. Perry and D.R. Coulter, “Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines», Appl. Phys. B 54, 46 (1991).

    Article  ADS  Google Scholar 

  5. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto and J. R. Whinnery, «Long-transient effects in lasers with inserted liquid samples,» J. Appl. Phys, 36, 3–8 (1965).

    Article  ADS  Google Scholar 

  6. S. A. Akhmanov, D. P. Krindach, A. V. Migulin, A. P. Sukhorukov and R. V.Khokhlov. «Thermal self-action of laser beams.» IEEE J. Quantum Electron. QE-4, 568–575 (1968).

    Article  ADS  Google Scholar 

  7. C. K. N. Patel and A. C. Tam, «Pulsed optoacoustic spectroscopy of condensed matter,» Rev. Mod. Phys. 53, 517–550 (1981).

    Article  ADS  Google Scholar 

  8. J. N. Hayes. «Thermal blooming of laser beams in fluids,» Appl. Opt. 11, 455–461 (1972).

    Article  ADS  Google Scholar 

  9. A. J. Twarowski and D. S. Kliger, «Multiphoton absorption spectra using thermal blooming. 1. Theory,» Chem. Phys. 20. 251–258 (1977).

    Google Scholar 

  10. S. J. Sheldon, L. V. Knight and J. M. Thorne. «Laser-induced thermal lens effect: a new theoretical model,» Appl. Opt. 21. 1663–1669 (1982).

    Article  ADS  Google Scholar 

  11. P. R. Longaker and M. M. Litvak, «Perturbation of the refractive index of absorbing media by a pulsed laser beam,» J. Appl. Phys. 40, 4033–4041 (1969)

    Article  ADS  Google Scholar 

  12. Gu Liu, «Theory of the photoacoustic effect in condensed matter,» Appl. Opt. 21, 955–960 (1982)

    Article  ADS  Google Scholar 

  13. C. A. Carter and J. M. Harris, «Comparison of models describing the thermal lens effect.» Appl. Opt. 23, 476–481 (1984).

    Article  ADS  Google Scholar 

  14. A. M. Olaizola, G. Da Costa and J. A. Castillo, «Geometrical interpretation of a laser-induced thermal lens,» Opt. Eng. 32, 1125–1130 (1993).

    Article  ADS  Google Scholar 

  15. F. Jurgensen and W. Schroer, «Studies on the diffraction image of a thermal lens,» Appl. Opt. 34, 41–50 (1995).

    Article  ADS  Google Scholar 

  16. S. Wu and N. J. Dovichi, «Fresnel diffraction theory for steady-state thermal lens measurements in thin films,» J. Appl. Phys. 67, 1170–1182 (1990).

    Article  ADS  Google Scholar 

  17. P. Brochard, V. Grolier-Mazza and R. Cabanel, «Thermal nonlinear refraction in dye solutions: a study of the transient regime,» J. Opt. Soc. Am. B 14, 405–414 (1997)

    Article  ADS  Google Scholar 

  18. D.J. Hagan, E.W. Van Stryland, M.J. Soileau, Y.Y. Wu and S. Guha. “Self-Protecting Semiconductor Optical Limiters”, Opt. Lett. 13, 315 (1988).

    Article  ADS  Google Scholar 

  19. P. Miles, «Bottleneck optical limiters: the optimal use of excited-state absorbers,» Appl. Opt. 33. 6965–6979 (1994).

    Article  ADS  Google Scholar 

  20. T. Xia, D. J. Hagan, A. Dogariu, A. A. Said and E. W. Van Stryland. «Optimization of optical limiting devices based on excited-state absorption.» Appl. Opt. 36, 4110–4122 (1997).

    Article  ADS  Google Scholar 

  21. R. W. Boyd, Nonlinear optics, (Academic Press, Inc. 1992).

    Google Scholar 

  22. M. D. Feit and J. A. Fleck, Jr., «Simple method for solving propagation problems in cylindrical geometry with fast Fourier transforms,» Opt. Lett. 14 662 (1989).

    Article  ADS  Google Scholar 

  23. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical recipes. The art of scientific computing, (Cambridge University Press, 1986).

    Google Scholar 

  24. D. Kovsh, S Yang, D. J. Hagan and E. W. Van Stryland; «Software for computer modeling of laser pulse propagation through the optical system with nonlinear optical elements,» Proc. SPIE 3472, 163–177 (1998).

    Article  ADS  Google Scholar 

  25. D. Kovsh, S. Yang, D. Hagan and E. Van Stryland, «Nonlinear optical beam propagation for optical limiting,» submitted to Applied Optics.

    Google Scholar 

  26. G.R. Hadley, «Wide-angle beam propagation using Padé approximant operators», Opt. Lett. 17, 1426 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Sheik-Bahae, A. A. Said and E. W. Van Stryland, « High-sensitivity, single-beam n2 measurements,» Opt. Lett. 14, 955–957 (1989).

    Article  ADS  Google Scholar 

  28. D. Landau and E. M. Lifshitz, Course of theoretical physics. Volume 6. Fluid mechanics, (Pergamon Press).

    Google Scholar 

  29. Dmitriy I. Kovsh, David J. Hagan, Eric W. Van Stryland, «Numerical modeling of thermal refraction in liquids in the transient regime.» Optics Express, 4, 315 (1999)

    Article  ADS  Google Scholar 

  30. S. R. J. Brueck, H. Kildal and L. J. Belanger, «Photo-acoustic and photo-refractive detection of small absorptions in liquids,» Opt. Comm. 34, 199–204 (1980).

    Article  ADS  Google Scholar 

  31. J. -M. Heritier, «Electrostrictive limit and focusing effects in pulsed photoacoustic detection,» Opt. Comm. 44. 267–272 (1983).

    Article  ADS  Google Scholar 

  32. Jian-Gio Tian et al, «Position dispersion and optical limiting resulting from thermally induced nonlinearities in Chinese tea,» Appl. Opt. 32, (1993).

    Google Scholar 

  33. Y. M. Cheung and S. K. Gayen, «Optical nonlinearities of tea studied by Z-scan and four-wave mixing techniques, » J. Opt. Soc. Am. B 11. 636–643 (1994).

    Article  ADS  Google Scholar 

  34. J. Castillo, V. P. Kozich et al, «Thermal lensing resulting from one-and two-photon absorption studied with a two-color time-resolved Z-scan,» Opt. Lett. 19, 171–173 (1994).

    Article  ADS  Google Scholar 

  35. M. Sheik-Bahae, A. A. Said and E. W. Van Stryland, «High-sensitivity, single-beam n2 measurements,» Opt. Lett. 14, 955–957 (1989).

    Article  ADS  Google Scholar 

  36. D. J. Hagan, T. Xia, A. A. Said, T. H. Wei and E. W. Van Stryland, «High Dynamic Range Passive Optical Limiters,» Int. J. Nonlinear Opt. Phys. 2, 483–501 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Van Stryland, E.W., Kovsh, D.I., Negres, R., Hagan, D.J., Dubikovsky, V., Belfield, K. (2000). Optical Limiting: Characterization & Numerical Modeling. In: Kajzar, F., Agranovich, M.V. (eds) Multiphoton and Light Driven Multielectron Processes in Organics: New Phenomena, Materials and Applications. NATO Science Series, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4056-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4056-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6272-2

  • Online ISBN: 978-94-011-4056-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics