Skip to main content

Electron Acceptors of the Fluorene Series in Photonics and Electronics: Recent Achievements and Perspectives

  • Conference paper
Multiphoton and Light Driven Multielectron Processes in Organics: New Phenomena, Materials and Applications

Part of the book series: NATO Science Series ((ASHT,volume 79))

Abstract

The recent progress in the chemistry of electron acceptors of the fluorene series and their applications for electronics and photonics is described, together with results from our laboratory. It is demonstrated that acceptors incorporating electron donating groups that results in intramolecular charge transfer are promising candidates for advanced materials with specific electrical and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansch, C., Leo, A., and Taft, R.W. (1991),Chem. Rev. 91, 165–195.

    Article  Google Scholar 

  2. Ogura, F., Otsubo, T., and Aso, Y. (1992),Sur Reports 11,439–464.

    Article  Google Scholar 

  3. Khodorkovsky,V.,aitd Becker,J.Y. (1994),in J.-P. Farges (ed.)Organic Conductors. Fundamentals and Applications,Marcel Dekker, New York, pp. 75–114.

    Google Scholar 

  4. Htinig, S. (1995), J. Mater. Chem. 5,1469–1479.

    Article  Google Scholar 

  5. Martín, N.,and Seoane,C.(1997),inH.S. Nalwa (ed.)Handbook of Organic Conductive Molecules and Polymers,vol. 1, Wiley, Chichester, pp. 1–86.

    Google Scholar 

  6. Martín, N., Segura, J. L., and Seoane, C. (1997),1Mater. Chem. 7,1661–1676.

    Article  Google Scholar 

  7. Zhao, H., Heintz, R.A., Ouyang, X., Grandinetti, G., Cowen, J., Dunbar, K.R. (1999),in J. Veciana, C. Rovira and D.B. Amabilino (eds.)Supramolecular Engineering of Synthetic Metallic Materials: Conductors and Magnets. NATO ASI Series Vol. 518,Kluwer Academic Publishers, Dodrecht, pp. 353–376.

    Chapter  Google Scholar 

  8. Wudl, F., Yu, H., Fourmigue, M., Hicks, R. (1999), in J. Veciana, C. Rovira and D.B. Amabilino (eds.)Supramolecular Engineering of Synthetic Metallic Materials: Conductors and Magnets. NATO ASI Series Vol.518,Kluwer Academic Publishers, Dordrecht, pp. 393--407.

    Chapter  Google Scholar 

  9. Strohriegl, P.,and Grazulevicius, J.V. (1997),in H.S.Nalwa (ed.),Handbook of OrganicConductive Molecules and Polymers vol.1, Wiley, Chichester, pp. 553–620.

    Google Scholar 

  10. Shattuck, M. D., and Vahtra, U. (1969), U.S. Patent 3,484,327.

    Google Scholar 

  11. Mukherjee, T.K., and Levasseur, L.A. (1965),J. Org .Chem. 30644–646.

    Google Scholar 

  12. Mukherje, T.K. (1968),Tetrahedron 24721–728.

    Article  Google Scholar 

  13. Mukherje, T.K. (1966),J. Phys. Chem. 703648–3652.

    Article  Google Scholar 

  14. Orchin, M., and Woolfolk, E.O., (1946),J. Am. Chem. Soc. 681727–1729.

    Article  Google Scholar 

  15. Woolfolk, E.O., and Orchin, M. (1955),Org. Syntheses,Coll. Vol. III, 837–838.

    Google Scholar 

  16. Sulzberg, T., and Cotter, R.J. (1970),J. Org . Chem. 352762–2769.

    Google Scholar 

  17. Turner, S.R. (1977), U.S. Patent 4,062,886.

    Google Scholar 

  18. Bloom, M.S., and Groner, C.F. (1977),Research Disclosure,32–36.

    Google Scholar 

  19. Mysyk, D.D., Sivchenkova, N.M., Kampars, V.E., and Neilands, O.Ya (1987),Izv. Akad. Nauk Latv. SSR Ser. Khim.,612–626 (in Russian).

    Google Scholar 

  20. Mysyk, D.D., Perepichka, I.F., and Sokolov, N.I. (1997),J. Chem. Soc. Perkin Trans. 2,537–545.

    Google Scholar 

  21. Kampars, V.E., and Neilands, O.Ya. (1977),Usp. Khim.(Russ. Chem. Rev.) 46945–966 (in Russian).

    Google Scholar 

  22. Kuder, J.E., Pochan, J.M., Turner, S.R., and Hinman, D.-L.F. (1978),J. Electrochem. Soc.: Electrochem. Sci. And Technology 1251750–1758.

    Article  Google Scholar 

  23. Mysyk, D.D., Perepichka, I.F., Edgina, A.S., and Neilands, O.Ya (1991),Latvian J. Chem. 727–735 (in Russian).

    Google Scholar 

  24. Perepichka, I.F., Kuz’mina, L.G., Perepichka, D.F., Bryce, M.R., Goldenberg, L.M., Popov, A.F., and Howard, J.A.K. (1998),J. Org . Chem . 636484–6493.

    Article  Google Scholar 

  25. Perepichka, I.F., Mysyk, D.D., and Sokolov, N.I. (1995),in N.S. Allen, M. Edge, I.R. Bellobonoand E. Selli (eds.),Current Trends in Polymer PhotochemistryEllis Horwood, New York, pp. 318–327.

    Google Scholar 

  26. Mysyk, D.D., Perepichka, I.F., Sivchenkova, N.M., Kampars, V.E., Neilands, O.Ya., andKampare, R.B. (1984),Izv. ANLaty. SSR Ser. Khim.,328–331 (in Russian).

    Google Scholar 

  27. Mysyk, D.D., Sivchenkova, N.M., Kampars, V.E., Neilands, O.Ya., and Kampare, R.B. (1984),Izv. AN Laty. SSR Ser. Khim.332–335 (in Russian).

    Google Scholar 

  28. Weiser, G. (1972),J. Appl. Phys 435028–5033.

    Google Scholar 

  29. Gill, W.D. (1972),J. Appl. Phys. 435033–5040.

    Google Scholar 

  30. Enomoto, T., and Hatano, M. (1974),Makromol. Chem. 17557–65.

    Article  Google Scholar 

  31. Perepichka, I F, Popov, A.F., Artyomova, T.V., Vdovichenko, A.N., Bryce, M.R., Batsanov, A.S., Howard, J.A.K., and Megson, J.L. (1995),J. Chem. Soc. Perkin Trans. 23–5.

    Google Scholar 

  32. Perepichka, I.F., Popov, A.F., Orekhova, T.V., Bryce, M.R., Vdovichenko, A.N., Batsanov, A.S., Goldenberg, L.M., Howard, J.A.K., Sokolov, N.I., and Megson, J.L. (1996),J Chem. Soc. Perkin Trans. 2,2453–2469.

    Google Scholar 

  33. Perepichka, I.F., Mysyk, D.D., and Sokolov, N.I. (1999),Synth. Metals 1019–10.

    Article  Google Scholar 

  34. Perepichka, I.F., Perepichka, D.F., Bryce, M.R., Goldenberg, L.M., Kuz’mina, L.G., Popov, A.F., Chesney, A., Moore, A.J., Howard, J.A.K., and Sokolov, N.I. (1998),Chem. Commun.,819–820.

    Google Scholar 

  35. Perepichka, D.F., Perepichka, I.F., Bryce, M.R., Popov, A.F., Chesney, A., and Moore, A.J. (1998), inStructures of Organic Compounds and Reaction Mechanisms,Inst. Physical Organic & Coal Chemistry, Donetsk, p. 94–100.

    Google Scholar 

  36. Skabara, P.J., Serebryakov, I.M., and Perepichka, I.F. (1999)J. Chem. Soc. Perkin Trans. 2,505–513.

    Google Scholar 

  37. Mysyk, D.D., and Perepichka, I.F. (1994),Phosphorus Sulfur and Silicon 95–96527–529.

    Google Scholar 

  38. Mysyk, D.D., Perepichka, I.F., Perepichka, D.F., Bryce, M.R., Popov, A.F., Goldenberg, L.M., and Moore, A.J. (1999), J. Org . Chem. 646937–6950.

    Google Scholar 

  39. Borsenberger, P.M., and Weiss, D.S. (1998)Organic Photoreceptors for Xerography,Marcel Dekker, New York.

    Google Scholar 

  40. Borsenberger, P.M., and Weiss, D.S. (1993)Organic Photoreceptors for Imaging Systems,Marcel Dekker, New York.

    Google Scholar 

  41. Gill,W.D.(1975),in J. Stuke and W.Brenig(eds.),Amorphous and Liquid Semiconductors,Taylor and Francis, London, p. 135.

    Google Scholar 

  42. Gill,W.D.(1974),in J. Stuke and W. Brenig (eds.),Proceedings of the Fifth International Conference on Amorphous and Liquid Sermiconductors,Taylor and Francis, London, p. 901.

    Google Scholar 

  43. Emeraldt, R.L., and Mort, J. (1974),J. Appl. Phys. 453943–3945.

    Article  ADS  Google Scholar 

  44. Turner, S.R. (1980),Macromolecules 13782–785.

    Article  ADS  Google Scholar 

  45. Loutfy, R.O., Hsiao, C.-K., Ong, B.S., and Keoshkerian, B. (1984),Can. J. Chem. 621877–1885.

    Article  Google Scholar 

  46. Loutfy, R.O. and Ong, B.S. (1984),Can. J. Chem. 622546–2551.

    Article  Google Scholar 

  47. Ong, B.S., Keoshkerian, B., Martin, T.I., and Hamer, G.K. (1984),Can. J. Chem. 63147–152.

    Article  Google Scholar 

  48. Matsui, M., Fukuyasu, K., Shibata, K., and Muramatsu, H. (1993),J. Chem. Soc. Perkin Trans. 2,1107–1110.

    Google Scholar 

  49. Matsui, M., Shibata, K., Muramatsu, H., and Nakazumi, H. (1996),J. Mater. Chem. 61113–1118.

    Article  Google Scholar 

  50. Turner, S.R., and Pochan, J.M. (1977), U.S. Patent 4,056–391.

    Google Scholar 

  51. Pochan, J.M., and Turner, S.R. (1977), U.S. Patent 4,063–947.

    Google Scholar 

  52. Bulyshev, Yu.S., Kashirskii, I.M., Pashkin, I.I., Andrievskii, A.M., and Tverskoi, V.A. (1990),Khim. Vys. Energ. 24232–236.

    Google Scholar 

  53. Pearson, J.M. (1977),Pure and Appl. Chem. 49463–477.

    Article  Google Scholar 

  54. Skabara, P.J., Serebryakov, I.M., and Perepichka, I.F. (1999),Synth. Metals 1011336–1337.

    Article  Google Scholar 

  55. Pravednikov, A.N., Kotov, B.V., and Tverskoi, V.A. (1978),Zh. Vses. Khim. Obshch. Im D.1. Mendeleeva 23524–536 (in Russian).

    Google Scholar 

  56. Hoegl, H., Barchietto, G., and Tar, D. (1972),Photochem. and Photobiol. 16335–352.

    Article  Google Scholar 

  57. Getmanchuk, Yu.P.; Sokolov, N.í.(1983), in Fundamentals of Optical Memory and Medium, issue 14, Vyshcha Shkola, Kiev, pp. 11–20 (in Russian).

    Google Scholar 

  58. Sokolov, N.I., Barabash, Y.M., Poperenko, L.V., Perepichka, I.F., Mysyk, D.D., and Kostenko, L.I. (1997),Proc. SPIE 3055171–180.

    ADS  Google Scholar 

  59. Sokolov, N.I., Barabash, Yu.M., Poperenko, L.V., Perepichka, I.F., Mysyk, D.D., and Komarov, V.A. (1998), Functional Materials 5 441–446.

    Google Scholar 

  60. Mysyk, D.D., Perepichka, I.F., Romashev, V.E., Andrievskii, A.M., and Kostenko, L. I. (1986), USSR Patent 1,241,673.

    Google Scholar 

  61. Mysyk, D.D., Perepichka, I.F., Kostenko, L.I., Sokolov, N.I., Perelman, L.A., and Grebenyuk, S.A. (1988), USSR Patent 1,441,718.

    Google Scholar 

  62. Perepichka, I.F., Mysyk, D.D., Sokolov, N.I., and Barabash, Yu.M. (1990), USSR Patent 1,637,244.

    Google Scholar 

  63. Perepichka, I.F., Mysyk, D.D., Sokolov, N.I., and Bazhenov, M.Yu. (1991),USSR Patent 1,658,599.

    Google Scholar 

  64. Perepichka, I.F., Mysyk, D.D., Sokolov, N.I., and Bazhenov, M.Yu. (1992), USSR Patent 1,777,487.

    Google Scholar 

  65. Kostenko, L.I., Perelman, L.A., Perepichka, I.F., Mysyk, D.D., Grebenyuk, S.A., Kotelenets, M.I., Popov, A.F., Sokolov, N.I., Kuvshinsky, N.G., and Bazhenov, M.Yu (1986), USSR Patent 1,228–672.

    Google Scholar 

  66. Kostenko, L.I., Perepichka, I.F., Perelman, L.A., Mysyk, D.D., Grebenyuk, S.A., Popov, A.F., Sokolov, N.I., Kuvshinsky, N.G., and Bazhenov, M.Yu. (1988), USSR Patent 1,441–964.

    Google Scholar 

  67. Manushevich, G.N., Buzurnyuk, S.A., Mysyk, D.D., Kostenko, L.I., Perelman, L.A., Perepichka, I.F., and Sivchenkova, N.M. (1988), USSR Patent 1,471,874.

    Google Scholar 

  68. Bazhenov, M.Yu., Barabash, Yu.M., Perepichka, I.F., Kostenko, L.I., and Sokolov, N. I. (1991), USSR Patent 1,702,850.

    Google Scholar 

  69. Perelman, L.A., Sokolov, N.I., Mysyk, D.D., Kostenko, L.I., Miroshnichenko, A.A., Kharaneko, O.L, Perepichka, I.F., Bazhenov, M.Yu., and Barabash, Yu.M. (1991), USSR Patent 1,729,277.

    Google Scholar 

  70. Perepichka, I. F., Mysyk, D.D., Sokolov, N.I., Kostenko, L.I., Perelman, L.A., Grebenyuk, S.A., Popov, A.F., Bazhenov, M.Yu., and Barabash, Yu.M. (1992), USSR Patent 1,743,300.

    Google Scholar 

  71. Malakhova, I.A., Bodrova, N.A., Pavlov, A.V., Koshelev, K.K., Orlova, L.I., Petrova, M.I., and Perepichka, I.F. (1992), USSR Patent 1,802,969.

    Google Scholar 

  72. Perepichka, I.F., Mysyk, D.D., Sokolov, N.I., Kostenko, L.I., Perelman, L.A., Grebenyuk, S.A., Popov, A.F., Sivchenkova, N.M., Bazhenov, M.Yu., and Barabash, Yu.M. (1992), USSR Patent 1,814,409.

    Google Scholar 

  73. Semenenko, N.M., Abramov, V.N., Kravchenko, N.V., Trushina, V.S., Buyanovskaya, P.G., Kashina, V.L., and Mashkevich, I.V. (1985),Zh. Obsch. Khim. 55324–330.

    Google Scholar 

  74. Abramov, V.N., Andrievskii, A.M.,Bodrova, N.A., Borodkina, M.S., Kravchenko, I.I., Kostenko, L.I., Malakhova, I.A., Nikitina, E.G., Orlov, LG., Perepichka, I.F.,Pototskii,I.S.,Semenenko,N.M.,and Trushina,V.S.(1987),USSR Patent 1,343,760.

    Google Scholar 

  75. Mysyk, D.D., Neilands, O.Ya., Kuvshinsky, N.G., Sokolov, N.I., and Kostenko, L.I. (1987), USSR Patent 1,443,366.

    Google Scholar 

  76. Belonozhko, A.M., Davidenko, N.A., Kuvshinsky, N. G.; Neilands, O.Ya., Mysyk, D.D.,and Prizva, G.I. (1989), USSR Patent 1,499,553.

    Google Scholar 

  77. Mysyk, D.D., Neilands, O.Ya., Khodorkovsky, V.Yu., Kuvshinsky, N.G., Belonozhko, A.M., and Davidenko, N.A. (1991), USSR Patent 1,665,678.

    Google Scholar 

  78. Zhang, Y., Wada, T., and Sasabe, H. (1998),J. Mater. Chem. 8809–828.

    Article  Google Scholar 

  79. Donckers, M.C.J.M., Silence, S.M., Walsch, C.A., Hache, F., Burland, D.M., Moemer, W.E., and Twieg, R.J. (1993),Opt. Lett. 181044–1046.

    Article  ADS  Google Scholar 

  80. Silence, S.M., Donckers, M.C.J.M., Walsch, Burland, D.M., Twieg, R.J., and Moemer, W.E. (1994),Appl. Opt. 332218–2222.

    Article  ADS  Google Scholar 

  81. Burland, D.M., Bjorklund, W.E., Moemer, W.E., Silence, S.M., and Stankus, J.J. (1995),Pure Appt. Chem. 6733–38.

    Article  Google Scholar 

  82. Burland, D.M., Devoe, R.J., Geletneky, C., Jia, Y., Lee, V.Y., Lundquist, P.M., Moylan, C.R., Poga, C., Twieg, R.J., and Wortmann, R. (1996),Pure Appl. Opt. 5513–520.

    Article  ADS  Google Scholar 

  83. Malliaras, G.G., Krasnikov, V.V., Bolink, H.J., and Hadziioannou, G. (1994),Appl. Phys. Lett. 65262–265.

    Article  ADS  Google Scholar 

  84. Malliaras, G.G., Krasnikov, V.V., Bolink, H.J., and Hadziioannou, G. (1995),Proc. SPIE 252694.

    Article  ADS  Google Scholar 

  85. Malliaras, G.G., Krasnikov, V.V., Bolink, H.J., andHadziioannou, G. (1995),Appl. Phys. Lett.66,1038–1040.

    Article  ADS  Google Scholar 

  86. Malliaras, G.G., Krasnikov, V.V., Bolink, H.J., and Hadziioannou, G. (1995),Proc. SPIE2527, 250.

    Article  ADS  Google Scholar 

  87. Malliaras, G.G., Krasnikov, V.V., Bolink, H.J., and Hadziioannou, G. (1995),Appl. Phys; Lett.67,455–457.

    Article  ADS  Google Scholar 

  88. Malliaras, G.G., Krasnikov, V.V., Bolink, H.J., and Hadziioannou, G. (1995),Phys. Rev. B52,14324–14327.

    Article  ADS  Google Scholar 

  89. Malliaras, G.G., Angerman, H., Krasnikov, V.V., ten Brinke, G., and Hadziioannou, G. (1996),J. Phys. D: Appl. Phys. 292045–2048.

    Article  ADS  Google Scholar 

  90. Malliaras, G.G., Krasnikov, V.V., Bolink, H.J., and Hadziioannou, G. (1996),Pure Appl. Opt. 5631–643.

    Article  ADS  Google Scholar 

  91. Kippelen, K., Sundalphon, K., Peyghambarian, N., Lyon, S.R., Padias, A.B., and Hall, H.K., Jr. (1993),Elect. Lett. 291873–1874.

    Article  Google Scholar 

  92. Meerholz, K., Volodin, B.L., Sundalphon, K., Kippelen, K., and Peyghambarian, N. (1994),Nature 371497–500.

    Article  ADS  Google Scholar 

  93. Sundalphon, K., Kippelen, K., Peyghambarian, N., Lyon, S.R., Padias, A.B., and Hall, H.K., Jr. (1994),Opt. Lett. 1968–70.

    ADS  Google Scholar 

  94. Volodin, B.L., Meerholz, K., Sundalphon, K., Kippelen, K., and Peyghambarian, N. (1994),Proc. SPIE 214472.

    Article  ADS  Google Scholar 

  95. Sundalphon, K., Kippelen, K., Meerholz, K., and Peyghambarian, N. (1996),Appl. Opt. 352346–2354.

    Article  ADS  Google Scholar 

  96. Kippelen, K., Sundalphon, K., Meerholz, K., and Peyghambarian, N. (1996),Appl. Phys. Lett. 681748–1750.

    Article  ADS  Google Scholar 

  97. Yeh, P. (1987), Appl. Opt. 26, 602–604.

    Article  ADS  Google Scholar 

  98. Perepichka, I.F., Perepichka, D.F., Bryce, M.R., Chesney, A., Popov, A.F., Khodorkovsky, V., Meshulam, G., and Kotler, Z. (1999),Synth. Metals 1021558–1559.

    Article  Google Scholar 

  99. Reucroft, P.J., Takahashi, K., and Ullal, H.(1974),Appl. Phys. Lett. 25664–666.

    Article  ADS  Google Scholar 

  100. Reucroft, P.J., Takahashi, K., and Ullal, H. (1975),J. Appl. Phys. 465218–5223.

    Article  ADS  Google Scholar 

  101. Coronado, E., and Gómez-García, C.G. (1998),Chem. Rev. 98273–296.

    Article  Google Scholar 

  102. Day, P., and Kurmoo, M. (1997),J. Mater. Chem. 81291–1295.

    Article  Google Scholar 

  103. Otsubo, T., Aso, Y., and Takimiya, K. (1996),Adv. Mater. 8203–211.

    Article  Google Scholar 

  104. Bryce, M.R. (1995),J. Mater. Chem. 51481–1496.

    Article  Google Scholar 

  105. Ferraris, J.P., Cowan, D.O., Walatka, V.V., and Perlstein, J.H. (1973),J. Am. Chem. Soc. 95948–949.

    Article  Google Scholar 

  106. Horiuchi, S., Yamochi, H., Saito, G., Sakaguchi, K., and Kusunoki, M. (1996),J. Am. Chem. Soc. 119 8604–8622.

    Article  Google Scholar 

  107. Moore, A.J., Bryce, M.R., Batsanov, A.S., Heaton, J.N., Lehmann, C.W., Howard, J.A.K., Robertson, N., Underhil, A.E., and Perepichka, I.F. (1998),J. Mater. Chem. 81541–1550.

    Article  Google Scholar 

  108. Bryce, M.R.,Moore, A.J., Batsanov, A.S., Howard, J.A.K.,Robertson, N., and Perepichka,I.F.(1999),in J.Veciana,C. Rovira and D.B.Amabilino(eds.)Supramolecular Engineering of Synthetic Metallic Materials: Conductors and Magnets. NATO ASI Series Vol. 518,Kluwer Academic Publishers, Dordrecht, pp. 437–449.

    Chapter  Google Scholar 

  109. Perepichka, I.F., Popov, A.F., Orekhova, T.V., Bryce, M.R., Andrievskii, A.M., Batsanov, A.S., Howard, J.A.K., and Sokolov, N.I.,J. Org .Chem.,submitted.

    Google Scholar 

  110. Gutman, F.E., and Lyons, L.E. (1967)Organic Semiconductors,Wiley, New York.

    Google Scholar 

  111. Mayoh, B., and Prout, C.K. (1972)J. Chem. Soc. Faraday Trans. 268, 1072–1082.

    Google Scholar 

  112. Torrance, J.B. (1979)Acc. Chem. Res. 1279–86. 55

    Article  Google Scholar 

  113. Nalwa, H.S., and Miyata, S. (eds.) (1997) Nonlinear Optics of Organic Molecules and Polymers, CRC Press, Boca Raton.

    Google Scholar 

  114. Bosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörscheimer, M., Kaatz, P., and Günter, P. (1995)Organic Nonlinear Optical Materials (Advances in Nonlinear Optics Series. Vol. 1), Gordon and Breach Publishers, Basel.

    Google Scholar 

  115. Marder, S.R., Sohn, J.E., and Stucky, G.D. (eds.) (1991)Materials for Nonlinear Optics. Chemical Perspectives. ACS Symposium Series 455, ACS, Washington.

    Google Scholar 

  116. Nahata, A., Wu, C., Knapp, C., Lu, V., Shan, J., and Yardley, J.T. (1994)Appl. Phys. Leu. 643371–3373.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Perepichka, I.F. (2000). Electron Acceptors of the Fluorene Series in Photonics and Electronics: Recent Achievements and Perspectives. In: Kajzar, F., Agranovich, M.V. (eds) Multiphoton and Light Driven Multielectron Processes in Organics: New Phenomena, Materials and Applications. NATO Science Series, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4056-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4056-0_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6272-2

  • Online ISBN: 978-94-011-4056-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics